In May 2024, the SOAR Adaptive-Module Optical Spectrograph (SAMOS) was installed at the SOAR 4.1 meter telescope in Cerro Pach´on, Chile. We discuss the instrument commissioning process, the integrated system performance, and first light results. SAMOS is a digital micromirror device (DMD)-based multi-object spectrograph and imager designed for use with the SOAR adaptive module ground-layer adaptive optics system. SAMOS covers 4000 Å to 9500 ˚A with a 3′ ×3′ field of view. The unique layout of the instrument allows for the spectroscopic and imaging channels to operate in parallel. While integrating spectral targets, the observer can simultaneously perform photometry on the remainder of the field, improving the spectro-photometric calibration compared to a conventional multi-object spectrograph. In SAMOS, the DMD is used as a reconfigurable slit mask that redistributes slits near-instantaneously. The spectrograph operates in a low resolution and high resolution mode with R∼2500 and R∼6500 respectively for a 0.33′′ slit width. We discuss the work completed during initial commissioning of the instrument and report the first light results.
We present an update to the 2024 Magellan Infrared Multi-Object Spectrograph (MIRMOS). MIRMOS is a wide-field (13′ × 3′) near-infrared (0.89-2.4 μm) spectrograph with either a multiobject or integral-field mode. MIRMOS is designed to perform either faint-object distant-object spectroscopy, or high-signal-to-noise transmission spectroscopy of exoplanet atmosphere. MIRMOS is designed to deliver a spectral resolution of > 3, 400, delivering the Y, J, H, and K bands over four Hawaii H2RG detectors. The slit robot allows the observer to create 92 slits or a 26′′ ×20′′ integral-field unit can be swapped in. In this proceeding, we describe changes since the last SPIE conference.
The Magellan InfraRed Multi-Object Spectrograph (MIRMOS) is a planned next generation multi-object and integral field spectrograph for the 6.5m Magellan telescopes at Las Campanas Observatory in Chile. MIRMOS will perform R∼3700 spectroscopy over a simultaneous wavelength range of 0.886 - 2.404μm (Y,J,H,K bands) in addition to imaging over the range of 0.7 - 0.886μm. The integral field mode of operation for MIRMOS will be achieved via an image slicer style integral field unit (IFU) located on a linear stage to facilitate movement into the beam during use or storage while operating in multi-object mode. The IFU will provide a ∼ 20′′×26′′ field of view (FoV) made up of 0.84′′ ×26′′ slices. This will be the largest FoV IFS operating at these wavelengths from either the ground or space, making MIRMOS an ideal instrument for a wide range of science cases including studying the high redshift circumgalactic medium and emission line tracers from ionized and molecular gas in nearby galaxies. In order to achieve the desired image quality and FoV while matching the focal ratio to the multi-object mode, our slicer design makes use of novel freeform surfaces for the pupil mirrors, which require the use of high precision multi-axis diamond milling to manufacture. We present here the optical design and predicted performance of the MIRMOS IFU along with a conceptual design for the opto-mechanical system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.