Magneto-resistive Random Access Memory (MRAM), considered the leading candidate for the next generation of universal memory, has moved from research to pilot production. Commercialization of the MRAM devices in mobile computing, cell phones, portable recording and other playback devices, home computing, consumer electronics, enterprise computing and telecommunications, promise to bring in annual revenues exceeding $50 billion during the coming years. CD-SEM correlation of contact physical Critical Dimension to Magnetic Tunneling Junction (MTJ) resistance is critical for MRAM device performance. This paper focuses on a new two-dimensional metric that more accurately characterizes MTJ resistance by calculating total contact area of unique and complex structures. We consider the advantages of the Contact Area metric for measurement of complicated shapes. We illustrate that introduction of the new metric allows for improvement in process control for critical contacts.
Lithography costs for IC production at resolutions of 65-nm and beyond have grown exponentially for each technology node and show no sign of slowing. Step and Flash Imprint Lithography (S-FIL), developed at the University of Texas (UT) uniquely offers IC manufacturers the potential for lower cost of ownership, because S-FIL does not require expensive optics, advanced illumination sources or chemically amplified resists (CAR). The SIA’s addition of Imprint Lithography to the International Technology Roadmap for Semiconductors (ITRS) in 2003, indicates the promise to become a preferred technology and has some compelling advantages over traditional 4X optical lithography.
Advanced 90nm binary & phase shift mask processes have been altered using thin Cr (15-nm) & thin e-beam resist (<150nm) resulting in sub 100-nm geometries necessary for S-FIL, and have become the baseline for template manufacture. Commercial production of advanced 1X templates requires CD metrology capability beyond the equipment typically used in 4X mask making. Full commercialization of Imprint Lithography requires not only the ability to generate a 1X template but also a metrology solution that can characterize critical dimension (CD) parameters of the template. Previous published work on S-FIL has focused mainly on high resolution templates produced on 100keV Gaussian pattern generators (PG), and has shown that resolution is only limited by the template.
This work demonstrates that an advanced commercial photomask facility can fabricate templates with sub-100 nm critical dimensions, and that the CDs can be characterized using a commercially available CD-SEM metrology tool. CD metrology repeatability of 0.7nm 3σ was established on a quartz only template with a 6025 form factor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.