Significance: Effective vein visualization is critically important for several clinical procedures, such as venous blood sampling and intravenous injection. Existing technologies using infrared device or ultrasound rely on professional equipment and are not suitable for daily medical care. A regression-based vein visualization method is proposed.
Aim: We visualize veins from conventional RGB images to provide assistance in venipuncture procedures as well as clinical diagnosis of some venous insufficiency.
Approach: The RGB images taken by digital cameras are first transformed to spectral reflectance images using Wiener estimation. Multiple regression analysis is then applied to derive the relationship between spectral reflectance and the concentrations of pigments. Monte Carlo simulation is adopted to get prior information. Finally, vein patterns are visualized from the spatial distribution of pigments. To minimize the effect of illumination on skin color, light correction and shading removal operations are performed in advance.
Results: Experimental results from inner forearms of 60 subjects show the effectiveness of the regression-based method. Subjective and objective evaluations demonstrate that the clarity and completeness of vein patterns can be improved by light correction and shading removal.
Conclusions: Vein patterns can be successfully visualized from RGB images without any professional equipment. The proposed method can assist in venipuncture procedures. It also shows promising potential to be used in clinical diagnosis and treatment of some venous insufficiency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.