In this work, an all-dielectric light polarizing element with 0 angle of incidence was fabricated and investigated. Linear polarizer for 1064 nm wavelength was formed by conformal deposition of dielectric thin films on the structured substrate. Its potential in laser applications was tested with laser-induced damage threshold evaluation for single-shot nanosecond pulses. Despite only dielectric materials, the optical resistance of the periodically structured element is several times inferior to that of the planar element. Differences in optical resistance correlate with formed electric field peaks within the modulated structure, revealing the problem to be solved in the ongoing work.
Optical elements are the main parts in laser system, which limit the total generated output power due to optical resistivity. The increase of beam diameter dimensions may compensate the optical performance of elements, however it leads to the increase of laser system size. Thus, any improvement in optical coatings has impact on either higher output power or lowering the size of system itself. Glancing angle deposition method is presented to produce porous nanostructured coatings, which are characterized by low inner stress. Multilayer Bragg mirrors are formed using only silica material to achieve high laser-induced damage threshold value. Laser conditioning effect is applied, to improve optical performance in ns regime and reach LIDT values over 180 J/cm2.
Optical elements are the main parts in laser system, which limit the total generated output power due to optical resistivity. The increase of beam diameter dimensions may compensate the optical performance of elements, however it leads to the increase of laser system size. Thus, any improvement in optical coatings has impact on either higher output power or lowering the size of system itself. Glancing angle deposition method is presented to produce porous nanostructured coatings, which are characterized by low inner stress. Multilayer Bragg mirrors are formed using only silica material to achieve high laser-induced damage threshold value. Laser conditioning effect is applied, to improve optical performance in ns regime and reach LIDT values over 180 J/cm2.
Optical components are the main parts in laser systems, which limits the total generated output power due to laser-induced damage. At nanosecond laser pulses materials experiences thermal expansion phenomena, therefore optical coatings gain stress leading to breakdown. Moreover, the main resistance to laser radiation is limited by material itself (band gap). Glancing angle deposition method is presented to produce porous nanostructured coatings, which are characterized by low inner stress. Optical resistivity dependance on porosity of several materials such as aluminium, niobium and silicium oxides singlelayers was evaluated. Furthermore, all-silica Bragg mirror is formed and optical properties investigated in different environments to achieve stable and superior optical resistance.
In this work we present a new all-silica coating - polarizer, which is also capable to withstand high density of radiation. In order to demonstrate the versatility of presented approach, several coating designs have been modelled and two of them fabricated together with the full-scale measurements and analysis necessary for polarizers implementation into high power microlaser systems. Two polarizing coatings at the wavelength of 355 nm have been formed using two stepper motors based GLAD system. Afterwards optical and structural analysis have been performed including spectrophotometric, atomic-force microscopy (AFM), scanning electron microscopy (SEM) and optical resistivity measurements.
Optical components are the main parts in laser systems, which limit the total generated output power due to laser-induced damage. At nanosecond laser pulses materials experience thermal expansion, therefore optical coatings gain stress leading to breakdown. Moreover, the main resistance to laser radiation is limited by material itself (band gap). Glancing angle deposition method is presented to produce porous nanostructured coatings, which are characterized by low inner stress. Optical resistivity dependance on porosity of several materials such as aluminium and niobium oxides single layers were evaluated. Furthermore, all-silica Bragg mirrors are formed and optical properties investigated in different environments to achieve stable and superior optical resistance.
In this work we report an experimental investigation of subsurface damage (SSD) in conventionally polished fused silica (FS), sapphire substrates, and YAG crystals which are widely used in laser applications and directly influence performances of critical ultrahigh intensity and high average power laser system optics.
Two surface treatment procedures were tested: 1 – plasma treatment, 2 – chemical treatment. Plasma and chemical treatments were applied to fused silica substrates. The laser induced damage threshold (LIDT) FS substrates were studied as the function of etching depth.
Optical components are the main parts in laser systems and also the limiting factor for high power laser. All-silica based optical components proved to have extremely high laser induced damage threshold and were already tested on standard glass substrates. Such coatings are fabricated by employing glancing angle deposition method, combination of nanostructured porous low refractive index and dense high refractive index thin films were fabricated. Anti-reflection coatings and mirrors with required reflection were achieved, which have superior LIDT values (50.7 J/cm2). Antireflection coating was deposited directly on BBO crystal and results are demonstrated. In this work, the possibility to improve microlaser systems with all-silica coatings is presented.
In this work, a novel multi-layer approach of high band-gap birefringent columnar coatings was proposed and investigated. The growth of anisotropic columnar nano-structures with elliptical shape cross-section was initiated by self-shadowing effect, which was induced by placing the substrate at oblique angle during the deposition process. Amorphous silica was deposited in so-called serial bi-deposition manner to form anisotropic films with high thickness uniformity. The combination of birefringent nano-structured and isotropic layers allows to form zero-order wave-plates with desirable phase delay difference (as an example, λ/4). Low optical losses and high transparency (T~99%) are demonstrated while indicating the potential to withstand laser fluences of 40 J/cm2 and 15 J/cm2 in nanosecond regime at 355 nm and 266 nm wavelengths, respectively.
Standard high reflectivity coatings consist of materials with high and low refractive indexes. Typically, optical resistivity of such elements is limited by the threshold value of material with high index. Combination of two deposition methods, namely ion-beam sputtering and oblique angle deposition, was used to form high reflectivity coatings for the wavelength of 355 nm. Variation of the design of standard coating and the number of top layers, deposited at oblique angle have been investigated. Laser induced damage thresholds, optical scattering, surface roughness, spectral performance etc. were tested for the experimental samples. Analysis indicate that combination of both deposition methods allows to enhance the optical resistivity of typical high reflictivity mirrors. Introducing standard method also allows to stabilize the spectra and reduce the losses of total optical component.
In present work, oblique angle deposition technique was employed to form nano-structured anisotropic layers evaporating amorphous materials. The combination of birefringent nano-structured and isotropic layers allows to form highly transparent (T ~ 99 %) wave-plates. Furthermore, such combination can be used to form two spectrally separated Bragg reflection zones for perpendicular polarizations. This feature allows to form polarizers for zero angle applications. Both elements can be manufactured using only one material by changing only its structural morphology what leads to superior LIDT value. In this work, the possibility to evaporate waveplates and polarizers for zero angle applications was shown.
Standard high reflectivity mirrors consist of layers with high and low refractive indexes. Typically, optical resistivity of such elements is limited by the threshold value of material with high index. Combination of two deposition methods, namely ion-beam sputtering and glancing angle deposition, was used to form high reflectivity mirrors for the wavelength of 355 nm. Variation of the design for standard coating and the number of top layers, deposited at oblique angle have been investigated. Laser induced damage thresholds, surface roughness, spectral performance etc. were tested for all the experimental samples. Analysis indicate that combination of both deposition methods allows to enhance the optical resistivity of typical high reflictivity mirrors. Fully sculptured thin film based mirrors also exhibit spectral instability and optical losses. Introducing standard method allows to stabilize the spectra and reduce the losses of total optical component.
Laser induced damage of optical coatings has been one of the most important targets during many decades of intensive research. Different techniques were used and explored with the aim to increase the resistance of multilayer systems to laser pulses. In this work, LIDT results of different “base” structures made by ion beam sputtering of Al2O3, SiO2 and their mixtures are presented, and further enhancement possibilities are discussed by applying additional layer structure using higher bandgap material – fluorides and glancing angle deposited SiO2.
Band-gap and refractive index are known as fundamental properties determining intrinsic optical resistance of multilayer dielectric coatings. By considering this fact we propose novel approach to manufacturing of interference thin films, based on artificial nano-structures of modulated porosity embedded in high band-gap matrix. Next generation all-silica mirrors were prepared by GLancing Angle Deposition (GLAD) using electron beam evaporation. High reflectivity (HR) was achieved by tailoring the porosity of highly resistant silica material during the thin film deposition process. Furthermore, the proposed approach was also demonstrated to work well in case of anti-reflection (AR) coatings. Conventional HR HfO2 and SiO2 as well as AR Al2O3 and SiO2 multilayers produced by Ion Beam Sputtering (IBS) were used as reference coatings. Damage performance of experimental coatings was also analyzed. All-silica based GLAD approach resulted in significant improvement of intrinsic laser damage resistance properties if compared to conventional coatings. Besides laser damage testing, other characteristics of experimental coatings are analyzed and discussed – reflectance, surface roughness and optical scattering. We believe that reported concept can be expanded to virtually any design of thin film coatings thus opening a new way of next generation highly resistant thin films well suited for high power and UV laser applications.
Optical elements for polarization control are one of the main parts in advanced laser systems. The state and intensity of polarized light is typically controlled by optical elements, namely waveplates. Polymers, solid or liquid crystals and other materials with anisotropic refractive index can be used for production of waveplates. Unfortunately, most of aforementioned materials are fragile, unstable when environmental conditions changes, difficult to apply in microsystems and has low resistance to laser radiation. Retarders, fabricated by evaporation process, do not consist any of these drawbacks. In order to manufacture such optical components with high quality, characterisation of deposition parameters are essential. A serial bi-deposition method was employed to coat anisotropic layers for polarisation control. Such waveplate can be deposited on micro optics or other optical elements, essentially improving compact optical systems. The range of available materials is limited by absorption losses for waveplates in UV spectral region. Therefore, the investigation was accomplished with four eligible candidates – TiO2, LaF3, Al2O3 and SiO2. Structural (XPS, XRD) and optical (spectrophotometry, ellipsometry) analysis have shown Al2O3 and SiO2 as the most applicable materials for UV spectral region.
Laser resistance of optical elements is one of the major topics in photonics. Various routes have been taken to improve optical coatings, including, but not limited by, materials engineering and optimisation of electric field distribution in multilayers. During the decades of research, it was found, that high band-gap materials, such as silica, are highly resistant to laser light. Unfortunately, only the production of anti-reflection coatings of all-silica materials are presented to this day. A novel route will be presented in materials engineering, capable to manufacture high reflection optical elements using only SiO2 material and GLancing Angle Deposition (GLAD) method. The technique involves the deposition of columnar structure and tailoring the refractive index of silica material throughout the coating thickness. A numerous analysis indicate the superior properties of GLAD coatings when compared with standard methods for Bragg mirrors production. Several groups of optical components are presented including anti-reflection coatings and Bragg mirrors. Structural and optical characterisation of the method have been performed and compared with standard methods. All researches indicate the possibility of new generation coatings for high power laser systems.
Technological developments in laser technology require advancements in optical components. Such demand is particularly important in UV spectral region. Antireflection coatings (AR) and waveplates as a widely used optical elements were produced based on glancing angle deposition (GLAD) method. Superior optical performance was measured for AR thin films. Broadband and broad-angle antireflection coatings were manufactured by using multilayer system when changing the refractive index profile by varying the porosity of material. SiO2, Al2O3 and LaF3 materials were used for formation of waveplates for UV region. An investigation of optical and resistant performance were conducted. All materials showed optical losses at the wavelength of 355 nm. Possible technological solutions are presented and investigated.
In this work we report an experimental investigation of subsurface damage (SSD) in conventionally polished fused silica
(FS) substrates which are widely used in laser applications and directly influence performances of optical elements.
Two procedures were developed: 1 - acid etching and 2 - superpolishing. Additionally, surface roughness and total
integrated scattering (TIS) measurements were performed to find correlation between the main surface properties and
laser induced damage threshold (LIDT) as circumstantial evidence of elimination of SSD.
Different durations of acid etching have been used to study LIDT of FS substrates. These experiments revealed that the
optimal etching time is ~1 min. for a given acid concentration. Laser induced damage threshold of etched and SiO2 layer
coated FS samples increased ~3 times, while of the ones that were not coated - 4 times. It has been revealed that for nonetched
surface a single nano- to micro-scale absorbing defect ensemble most likely associated with polishing particles
within Beilby layer was dominant, while damage morphology in ~1 min etched FS sample had no point defects
observed.
More than 5 times lower roughness value (RMS) was obtained by superpolishing procedure using colloidal silica
abrasive particles. LIDT of such superpolished fussed silica substrates was also strongly increased and compared with
conventional CeO2 abrasive polishing.
In the past years the usage of mixed oxides coatings lead to an important improvement of laser damage threshold and
quality of optical elements. In this study influence of post treatment procedure - ex-situ annealing - is examined in terms
of quality, optical constants and laser induced damage threshold (LIDT) of mixed HfO2 and SiO2 coatings. Monolayer
thin films containing different fractions of HfO2 are deposited with ion beam sputtering technology (IBS.) All samples
are post annealed at different temperatures and optimal regimes are defined. Refractive index and absorption coefficient
dispersion is evaluated from transmission spectra measurements. Surface roughness of all samples is characterized
before and after deposition and annealing, using atomic force microscopy (AFM). Microstructural changes are identified
from changes in surface topography. Further, optical resistance was characterized by 5.7 ns duration pulses for 355 nm
wavelength laser radiation, performing 1-on-1 sample exposure tests with high resolution micro-focusing approach for
monolayer samples and S-on-1 tests for multilayer reflectors. Morphology of damaged sites was analyzed through
optical microscopy. Finally, conclusions about annealing effect for mixed HfO2 and SiO2 monolayer and multilayer
coatings are made.
Despite the growing improvement in optical polishing and deposition technologies optical resistance of the laser
components used for high-power UV applications remains insufficient in many cases. In this study influence of different
fused silica substrate preparation, post treatment processing and deposition techniques are examined in terms of surface
roughness, optical scattering and laser damage performance. The conventional techniques of polishing, etching, and
finally surface cleaning of substrates have been investigated. Further, a part of samples were also coated with SiO2
monolayer by Ion Beam Sputtering (IBS) technique. Surface quality was characterized prior to and after the treatment
and deposition processes by the means of total integrated scattering (TIS) and atomic force microscopy (AFM). The
experimental results of surface roughness measurements exhibited a good correlation between AFM and TIS methods.
Further optical resistance was characterized with 10 ns duration pulses for 355 nm wavelength laser radiation performing
1-on-1 sample exposure test with high resolution micro-focusing approach. A dominating damage precursor ensembles
produced during manufacturing processes were identified and directly compared. Finally, the conclusions about the
quality influencing factors of investigated processes were drawn.
The stability of thin film coatings for applications especially in the UV spectral range is oftentimes a limiting factor in
the further development of radiation sources and beam delivery systems. Particularly, functional coatings on laser and
conversions crystals as well as resonator mirrors show an insufficient lifetime due to laser-induced degradation. Previous
investigations in the power handling capability of UV coatings mostly concentrate on the properties of pure oxide
materials and particle mitigation.
Recent innovations in ion beam sputtering technology enabled efficient deposition of mixture coatings of different oxide
materials. In combination with an advanced thickness monitoring equipment, the described IBS deposition systems are
capable of employing designs with sub-layers of a few nm thickness. In the present investigation, the stability of classical
designs using pure oxide materials is compared with gradient index design concepts based on mixture materials.
Reflecting and transmitting thin film coatings employing classical and gradient index approaches manufactured under
comparable conditions are characterized in respect to their power handling capability. The results are analyzed before the
background of theoretical expectations regarding contributions from field enhancement and absorptance effects.
Various investigations show that damage threshold of optical coatings by intense ultrashort laser pulses is closely related
to the intensity of electric field at layer interfaces. LIDT measurements of high reflectance optical coatings using
femtosecond pulses at 800 nm wavelength are presented. ZrO2, HfO2 and Ta2O5 as high refractive index materials for two sets of experiments were chosen. Two different coating designs were investigated: standard quarter-wavelength design with SiO2 overcoat and modified "E-field" non quarter-wavelength design with suppressed electric field. Damage sites were studied using optical and AFM microscopes. Relation between electric field distribution and damage
morphology was observed. The results demonstrate, that suppressing electric field at layer interfaces enables to increase
LIDT for high reflectance coatings almost twice if compared to standard quarter-wavelength design when using
ultrashort laser pulses. However electric field distribution is sensitive to variations in thicknesses of outer layers, so
deposition process should be precisely controlled to get improvement in LIDT of coatings.
A quest for higher laser powers is one of the main driving forces in development of laser technology. Unfortunately all
laser components have some limit to the intensity of optical radiation that can be applied on them - the so-called laser-induced
damage threshold (LIDT). To enable further power scaling of laser devices, novel highly resistant optical
components have to be developed. Such components are laser crystals, mirrors, fibers and other components typically
coated with periodic dielectric layers made using e-beam, sputtering or sol-gel technologies. The production materials
and methods of all the mentioned optics are under constant development, which requires a reliable quality test to provide
the feedback to the manufacturing process; one of such tests are the measurements of LIDT. LIDT measurement
procedure using repetitive laser pulses, as described in ISO 11254-2 standard, is time- and human resource consuming, if
performed without automation. We developed an automated station for the measurements of LIDT that greatly reduces
the required human resources and allows fast data collection. In this presentation, we briefly describe the main
components of this automated LIDT test station. Furthermore we present the comparison of the latest results obtained on
LIDT measurements of ZrO2/SiO2, Nb2O5/SiO2, Ta2O5/SiO2 and TiO2/SiO2 periodic high reflecting dielectric layers
performed using repetitive nanosecond laser pulses.
This investigation was aimed at optimization of optical properties, stability and radiation resistance of optical coatings
deposited using the standard vacuum coating plant equipped with the ion source for ion assisted deposition. There are
some reports showing that porous dielectric coatings are more resistant to intense laser radiation, however they have
smaller environmental stability than denser coatings, which are more sensitive to laser radiation. The influence of
important technological parameters (deposition rate, substrate temperature, energy of ions) on optical properties and
radiation resistance of high reflection dielectric coatings based on Nb2O5/SiO2 and Ta2O5/SiO2 in VIS spectral region is
presented.
The performance of optical coatings for UV region (200-300 nm) is closely related to their optical losses. There are a
few factors which significantly influence the extinction of deposited coating - deposition vacuum, contamination from
filaments of e-beam guns, ion source and finally, the optical properties of selected deposition materials. In this work the
contribution of these different factors was investigated and evaluated. HfO2, Al2O3 and SiO2 are the most widely used
materials for producing UV optical coatings down to 200 nm. Influence of background oxygen pressure during HfO2 and
Al2O3 deposition was evaluated which enabled to reduce extinction of the deposited UV optical coatings.
High power laser systems are one of the most rapidly growing areas in the development of laser technology. This also
leads towards higher requirements for environmental stability of optical components and their resistance to laser
radiation. There are some reports showing that porous dielectric coatings are more resistant to intense laser radiation,
however they have smaller environmental stability than denser coatings, which are more sensitive to laser radiation.
The influence of important technological parameters (deposition rate, substrate temperature, energy of ions) on optical
and microstructural properties of high reflection dielectric coatings based on Nb2O5/SiO2, and Ta2O5/SiO2 in VIS spectral
region is presented.
Furthermore the LIDT measurements using repetitive nanosecond laser pulses of Nb2O5/SiO2 and Ta2O5/SiO2 high
reflecting optical coatings based on ISO 11254-2 standard are presented.
An influence of substrate temperature and working gas in coating plant during evaporation process on the laser-induced damage threshold (LIDT) of high reflection dielectric coatings was experimentally investigated. Also a LIDT comparison of ion assisted deposition (IAD) and conventional electron-beam evaporation (non-IAD) coatings fabricated under the same substrate temperature (300 °C) was performed. A set of different type high reflection mirrors were tested for LIDT at 532 nm for 3.4 ns pulses: one type of non-IAD and six types of IAD evaporated at different substrate temperatures and different working gases. All coatings were made on BK7 glass substrates from ZrO2 and SiO2. The computer controlled test station for LIDT measurements according to the requirements of current ISO 11254-2 standard was used. All measurements were performed at 10 Hz pulse repetition rate (S-on-1 test). The tests were performed at fixed spot size. Strong LIDT dependence on substrate temperature of was observed.
High density, improved adhesion and environmental stability are the main features of dielectric optical coatings produced using ion-assisted deposition (IAD) technology. However, investigations of resistance of IAD coatings to intensive laser radiation show controversial results. A series of experiments were done to examine the influence of ion gun operation on the transmittance of fused silica substrates. It was shown that operation of ion source introduced extinction in UV spectral range. Optical properties of single hafnia layers and multilayer dielectric mirrors deposited using conventional e-beam evaporation and different modes of IAD were investigated. Microstructural analysis using X-ray diffraction (XRD) measurements and AFM scanning of coated areas was carried out. Single hafnia layers deposited using high energy ion assistance had more amorphous structure with smaller crystallites of monoclinic phase. High reflection UV mirrors deposited using high energy ion assistance had slightly higher mean refractive indices of hafnia, higher extinction than conventional e-beam deposition, but demonstrated slightly higher laser induced damage threshold (LIDT) values measured at 355 nm. Deposition using the lowest energy ions produced the most porous coatings with the best LIDT of 7.7 J/cm2.
The ion assisted thin film deposition (IAD) method has been used extensively for more than two decades, but questions about possibility of improving of the laser-induced damage threshold (LIDT) by this method compared with the conventional electron-beam evaporation (non-IAD) method are still not fully answered. A more complete understanding of different factors that can influence laser-induced damage threshold is necessary for continued development of multilayer dielectric coatings optimized for high-power laser applications. To clarify these factors we performed comparison of LIDT for IAD and non-IAD coatings in nanosecond and femtosecond pulse ranges. High reflectance mirrors at 800 nm and 532 nm were tested. Mirror coatings were made of ZrO2 and SiO2. Automated LIDT measurements were performed according to the requirements of current ISO 11254-2 standard. Two lasers were used for the measurements: Nd:YAG (λ = 532 nm, τ = 5 ns) and Ti:Sapphire (λ = 800 nm, τ = 130 fs). Measurements at 800 nm and 532 nm were performed at 1-kHz and 10 Hz pulse repetition rate respectively (S-on-1 test). The damage morphology of coatings was characterized by Nomarski microscopy and relation of LIDT with coating parameters was analyzed.
A comparison of laser induced damage thresholds (LIDT) of ion assisted deposition (IAD) and standard electron beam deposition dielectric coatings on BK7 glass with different surface roughness was performed. Five types of high reflectance mirrors at 800 nm and two types of high reflectance mirrors at 1064 nm were tested. Mirror coatings were made of ZrO2 and SiO2. Automated LIDT measurements were performed according to the requirements of current ISO 11254-2 standard. Two lasers were used for the measurements: Nd:YAG (l = 1064 nm, t = 13 ns) and Ti:Sapphire (l = 800 nm, t = 130 fs ). All measurements were performed at 1-kHz pulse repetition rate (S-on-1 test). A fixed spot size was used for each laser. For 1064 nm it was ~ 70 um and for 800 nm ~ 500 um. The damage morphology and structure of coatings were characterized by an atomic force microscopy (AFM), Nomarski microscopy and X-ray diffraction (XRD).
New results of the numerical and experimental investigation of compact solid-state lasers with pulse compression by backward stimulated scattering and multipass laser amplifiers are presented. New models of the master oscillator with the combined passively and actively Q-switched Nd:YAG produce single-mode pulses whose energies are approximately 6 mJ, duration < 2 ns and timing jitter approximately 5 ns. Investigations of Cr4+:YAG crystal bleaching by 150 ps and 2.3 ns long pulses with the Gaussian intensity distribution permitted to obtain more reliable values for ground and excited state absorption cross sections. Application of the active Q-switching with negative feedback enabled to achieve synchronized single-mode pulses with the duration of < 2 ns and the energy of approximately 7 mJ with energy deviations of +/- 1.5% and timing jitter of < 0.5 ns. It is shown that the SBS-compressor filled with heavy fluorocarbons and pumped by amplified (approximately 40 mJ) symmetrical short (approximately 2 ns) pulses can produce the Stokes pulses with 25 mJ energy and the duration as short as 90 ps. A modified Nd:YAG laser with a hybridly Q-switched master oscillator and heavy freon as a Brillouin medium and a multipass Nd:YAG amplifier can generate pulses with the duration of approximately 100 ps and the energy of > 0.6 J at repetition rates of approximately 10 Hz with pulse jitter approximately 1 ns.
The results of the numerical simulation of the laser beam quality changes after propagation through the passive and active optical systems with the linear and nonlinear aberrations are presented. The new algorithm for the calculation of the phase conjugation by steady-state SBS is developed. It is found that the parameter M2 of the Stokes beam in the saturation regime is often nearly the same as that of the pump beam. The generation of short (approximately 1.5 nsec) pulses with energies exceeding 4 mJ has been obtained using passive Q-switching of the short (approximately 10 cm) resonator of Nd:YAG laser by GSGG:Cr,Nd crystals. After SBS-compression the pulses with approximately 120 psec duration and with energies of approximately 1 mJ have been obtained. Four-pass Nd:YAG amplifier amplifies the pulses to the energies approximately 500 mJ with the duration of pulses of approximately 170 psec. Experimentally obtained results are in good agreement with the mathematical modelling of short pulse generation and amplification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.