Forecasting rapid intensity changes in tropical cyclones (TCs) is hard as the factors responsible span many scales. External and internal dynamical and thermodynamical variables act simultaneously in a nonlinear fashion, either complementing, amplifying, inhibiting or not impacting the TC intensity at all. We try to address the following question: What is the relative importance of the external and vortex-scale variables that influence rapid intensity changes within a TC? Further, which of these variables must be prioritized from an observational standpoint? To answer these questions, a systematic analysis was conducted on a large number of representative TCs to make statistically significant conclusions using discriminant analyses of wavenumber (WN) - filtered fields, with a principal component analysis to detect over-fitting and identify the subset of variables (from the environment and the vortex) consistently correlated with rapid intensity change. Our analyses indicate that a small number of variables wield the most influence on TC rapid intensity changes. The most important variables within the vortex are the WN 0 of precipitation within the radius of maximum winds, the amplitudes of WN 1 of precipitation and the mid-level horizontal moisture flux convergence in the rain band region. Likewise, the most important environmental variables are the angle of the driest air from the shear vector and the magnitude of environmental wind shear. These variables must be prioritized in future observational and consequent data assimilation efforts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.