Cylindrical microresonators based on the surface of optical fibers (SNAP structures) appear to be a promising platform for a variety of photonic devices. It turned out that the manufacturing accuracy of standard telecommunication optical fibers and the smoothness of their surface may be high enough to excite high-quality whispering gallery (WGM) modes in their cladding. Here we consider the question of the quality of resonances obtained on the surface of optical fibers, and the possibility of using them to create high-finesse optical filters. We used standard telecommunication fiber SMF-28 with a silica cladding diameter of 125 microns as samples to excite whispering gallery modes. We found that annealing with fire allows to obtain quality factors up to Q∼107. Corresponding decay time in the microcavity was measured to be τ∼15 ns. We also discussed different schemes of optical filters that may be based of cylindrical microresonators.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.