The SiOx/Si quantum wells (QWs) structures were fabricated by using the successive deposition technique, as quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the third generation solar cell applications. In Si/SiOx QWs, the thicknesses of Si layers and SiOx layers were varied between 1 to 5 nm, respectively. The roughness of sputter-deposited Si on SiOx was less than 4 Å in the thickness of 2 nm. By using the SiOx/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The tunneling phenomena and good interface properties were observed in the fabricated QWs structures.
Mechanically grooved silicon solar cells with buried contact copper electrode were attempted. In order to groove a simple mechanical grooving system was home-made, in which synchronous motors in hard disc driver (HDD), audio amplifier, signal generator were used. For the anti-reflection films sputtering condition for SiNx films was optimized. With increasing input power, pressure, index of refraction of the films increased so that a very low etching rate of 0.8 nm/min could be achieved with a condition of Ar and N2 flow rate of 5 SCCM, input power of 300 W and sputtering pressure of 1 × 10-2 torr. Annealing condition for the formation of nickel silicie from electroless plated Ni-P layer was optimized as well as plating condition of copper electrode. However, the conversion efficiency of the BCSC in this study is 3.6% which is unexpectedly small. It seems that the reason for the low efficiency is due to short circuit forming in the lancet of the pyramid.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.