KEYWORDS: Holograms, Diffraction, Reconstruction algorithms, 3D image reconstruction, Detection and tracking algorithms, Image segmentation, Digital holography, Image processing algorithms and systems, Image processing, Biological research
Significance: Digital holographic microscopy (DHM) is a promising technique for the study of semitransparent biological specimen such as red blood cells (RBCs). It is important and meaningful to detect and count biological cells at the single cell level in biomedical images for biomarker discovery and disease diagnostics. However, the biological cell analysis based on phase information of images is inefficient due to the complexity of numerical phase reconstruction algorithm applied to raw hologram images. New cell study methods based on diffraction pattern directly are desirable.
Aim: Deep fully convolutional networks (FCNs) were developed on raw hologram images directly for high-throughput label-free cell detection and counting to assist the biological cell analysis in the future.
Approach: The raw diffraction patterns of RBCs were recorded by use of DHM. Ground-truth mask images were labeled based on phase images reconstructed from RBC holograms using numerical reconstruction algorithm. A deep FCN, which is UNet, was trained on the diffraction pattern images to achieve the label-free cell detection and counting.
Results: The implemented deep FCNs provide a promising way to high-throughput and label-free counting of RBCs with a counting accuracy of 99% at a throughput rate of greater than 288 cells per second and 200 μm × 200 μm field of view at the single cell level. Compared to convolutional neural networks, the FCNs can get much better results in terms of accuracy and throughput rate.
Conclusions: High-throughput label-free cell detection and counting were successfully achieved from diffraction patterns with deep FCNs. It is a promising approach for biological specimen analysis based on raw hologram directly.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.