In this paper we investigate the application of a rotational-shear interferometer, toward the problem of simultaneously estimating the directions of well-localized sources, and their spectral profiles. Rotational shear makes possible the acquisition of a spectrum estimate, without the mechanical scan required in using a Michelson interferometer in Fourier-transform spectroscopy. The spectrum and angle estimates are obtained computationally. The interferometric data enables the application of super-resolution direction-finding techniques commonly used in radar and sonar array processing.
We present an adaptation of the BEAMTAP (Broadband and Efficient Adaptive Method for True-time-delay Array Processing) algorithm, previously developed for wideband phased array radars, to lower bandwidth applications such as sonar. This system utilizes the emerging time or wavelength multiplexed optical hydro-phone sensors and processes the cohered array of signals in the optical domain without conversion to the electronic domain or digitization. Modulated signals from an optical hydro-phone array are pre- processed then imaged through a photorefractive crystal where they interfere with a reference signal and its delayed replicas. The diffraction of the sonar signals off these adaptive weight gratings and detection on a linear time- delay-and-integrate charge coupled device (TDI CCD) completes the true-time-delay (TTD) beamforming process. Optical signals focused on different regions of the TDI CCD accumulate the appropriate delays necessary to synchronize and coherently sum the acoustic signals arriving at various angles on the hydro-phone array. In this paper, we present an experimental demonstration of TTD processing of low frequency signals (in the KHz sonar regime) using a TDI CCD tapped delay line. Simulations demonstrating the performance of the overall system are also presented.
We present a novel and efficient approach to true-time-delay (TTD) beamforming for large adaptive phased arrays with N elements, for application in radar, sonar, and communication. This broadband and efficient adaptive method for time-delay array processing algorithm decreases the number of tapped delay lines required for N-element arrays form N to only 2, producing an enormous savings in optical hardware, especially for large arrays. This new adaptive system provides the full NM degrees of freedom of a conventional N element time delay beamformer with M taps, each, enabling it to fully and optimally adapt to an arbitrary complex spatio-temporal signal environment that can contain broadband signals, noise, and narrowband and broadband jammers, all of which can arrive from arbitrary angles onto an arbitrarily shaped array. The photonic implementation of this algorithm uses index gratings produce in the volume of photorefractive crystals as the adaptive weights in a TTD beamforming network, 1 or 2 acousto-optic devices for signal injection, and 1 or 2 time-delay-and- integrate detectors for signal extraction. This approach achieves significant reduction in hardware complexity when compared to systems employing discrete RF hardware for the weights or when compared to alternative optical systems that typically use N channel acousto-optic deflectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.