KEYWORDS: Signal to noise ratio, Optical amplifiers, Signal detection, Spatial resolution, Digital filtering, Scattering, Sensors, Fiber optics sensors
The signal-to-noise ratio (SNR) of the measurement for direct-detection Brillouin optical time-domain analyzers is modelled and experimentally validated, with and without the use of optical pre-amplification. Results indicate that preamplification associated with a good-quality photo-detector improves considerably the actual SNR, with only 1.5 dB penalty compared to the ideal shot noise limit.
A novel technique is proposed to obtain a flexible and variable spatial resolution from a conventional Brillouin optical time-domain analyzers using a fast post-processing algorithm. The approach is very attractive since a fine spatial resolution can be obtained from a coarsely resolved measurement obtained using a pulse longer than the acoustic settling time, leading to a better overall sensing performance, in particular for sub-metric spatial resolutions, with no compromises on sensing range and measurement time.
Brillouin optical time-domain reflectometry is used to perform distributed forward stimulated Brillouin scattering (FSBS) measurements. This configuration suppresses the need for an additional frequency scanning to evaluate the local Brillouin peak gain when probing the FSBS resonance. The use of a broad pass-band filter makes the system insensitive to moderate temperature or strain fluctuations, but enables to accurately retrieve any change in intensity due to FSBS.
A high-performance Brillouin optical time-domain analysis (BOTDA) is achieved using the Brillouin gain bandwidth reduction technique combined with high injected probe power. In the probe branch, dual-tone probe wave with fixed frequency separation is used for enhancing the probe power to +5 dBm. In the pump branch, a differential π-phase-shift long-pulse width pair is used to narrow the Brillouin gain spectrum. On the basis of high probe power and 2.5-m spatial resolution, the Brillouin gain spectrum can be narrowed to a level of 17 MHz, whereas the Brillouin gain spectrum of conventional single-pulse BOTDA sensor is 51 MHz. As a result, 50-km sensing range with 2.5-m spatial resolution and 1.1-MHz Brillouin frequency shift (BFS) accuracy has been achieved. Meanwhile, the narrowed Brillouin gain spectrum can give rise to sharp rising/falling edge in the BFS profile when the hot spots are introduced, which increases the detection robustness of the small temperature/strain change in the BOTDA system.
A Brillouin optical time-domain analysis (BOTDA) technique for enhancing the probe power to +5 dBm is proposed and demonstrated, which is based on a conventional dual sideband probe setup, but the probe waves are modulated by a frequency shift keying signal. The pump distortion is compensated in the time domain with this technique. By employing a 105-km sensing fiber, this technique is experimentally validated with 2-m spatial resolution. Furthermore, another experiment is designed to show the good tolerance for the sensing fibers combined with large Brillouin frequency shift (BFS) difference, as is demonstrated in a 50-km-long sensing fiber consisting of two segments with large BFS difference (200 MHz).
A novel BOTDA method based on differential ∏-phase-shift-pulse pair is proposed for narrowing the Brillouin gain spectrum. Theoretical analysis and experimental results demonstrate that the proposal could achieve 17 MHz Brillouin gain spectrum linewidth with a fixed spatial resolution of 2.5 m. The Brillouin gain spectrum linewidth is 3 times narrower than that obtained using conventional single-pulse based BOTDA method with same spatial resolution, resulting in √3 times frequency accuracy improvement. Furthermore, the sharper rising/falling edge of the Brillouin frequency shift profile resulting from the narrowed Brillouin gain spectrum could obtain more precise temperature/strain information along the fiber.
The robustness of the BOTDA method based on dual-tone probe wave with fixed frequency separation is studied. It is verified that when the sensing fiber consists of two fiber segments with large Brillouin frequency shift difference (>100 MHz), the non-local effect would take place in the front fiber segment, which gives rise to frequency error on the determination of hotspot. Aiming at solving this problem, both the upper and lower probe sidebands are acquired simultaneously by using two photodiodes, and the average between the Brillouin gain and loss spectrum is calculated to eliminate the detrimental impact of the non-local effect.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.