In this paper, in order to apply to optical connection components such as fan-in-fan-out (FIFO) devices for multicore fibers (MCFs), we design polymer optical waveguides with circular cores satisfying the single-mode condition, which are fabricated using the Mosquito method, and experimentally demonstrate that the optimum S-shape bent core waveguide can be fabricated as designed. The Mosquito method is a technique we have developed to form circular cores in both multimode and single-mode waveguides using a commercially available microdispenser and multi-axis syringe scanning robot. We have demonstrated that single-mode waveguides fabricated by the Mosquito method can be coupled with SMF with low loss. However, in order to realize a waveguide type FIFO device for MCFs by the Mosquito method, it is necessary to maintain micron-order positioning accuracy for the cores while three dimensionally aligning multiple cores in FIFO patterns. Since the pitch between the cores on the MCF side is very narrow, the core position is likely to deviate from the design value due to the liquid monomer flow caused by needle scan. We statistically confirm the possible amount of deviation from the design position by needle scan and feed it back to the program of needle scan path for the FIFO. We successfully fabricate a four-core FIFO with a desired core pitch. It is experimentally confirmed that the insertion loss is 1.4 dB on average. From these investigations, we confirm that the Mosquito method has an ability to fabricate small and low-loss FIFO devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.