Potato cultivation is regularly affected by Alternaria solani, a destructive foliar pathogen causing early blight, a premature defoliation of potato plants resulting in yield losses. Currently, Alternaria is treated through preventive application of chemical crop protection productions, following warnings based on weather predictions and visual observations. Automatic detection could make the mapping of early blight more accurate, reducing production losses and application of crop protection products. Current research explores the potential of deep learning of high resolution imagery within precision agriculture, mainly using supervised learning. However, available datasets are often limited in size and variation, which reduces the robustness of the developed models. Here, we present a convolutional network to detect Alternaria and evaluate the influence of sampling size, sampling balance and sampling accuracy on the model performance. These analyses are based on ultra-high-resolution datasets of modified RGB cameras obtained with unmanned aerial vehicles (UAV) and collected over experimental in-field Alternaria trials. By using this varied dataset instead of a single-time dataset, higher accuracies are achieved. The method is relatively robust for imbalances of the training dataset. Further, we show that labeling quality plays a role, but that an error of up of to 20% of labeling is acceptable for good results. In conclusion, extra variability leads to more robust disease detection, desirable for in-field application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.