Angular displacement mechanisms are widely used in X-ray diffraction and the nrad resolution is essential for high resolution X-ray diffractor. A multi-pass differential interferometer is designed to improve the resolution of the angel to ~ 10 nrad by increasing the optical pass length. For common interferometer based on Michelson interferometry, nonlinearity is caused by phase mixing due to the imperfect of polarization optical components in both homodyne and heterodyne interferometers. In this angular measurement interferometer, the laser beam of the reference path and measuring path are separated to eliminate the mixture and to reduce the nonlinearity. The four-pass design of the reference and measuring beam improve the resolution. The performance of the interferometer can be used measure the small angle generated by compact piezo driven flexure hinge stage.
Heterodyne interferometer is a nanometer measurement system that uses the laser wavelength as the working reference for length measurement. Under ideal conditions, the laser wavelength is the wavelength λ0 of the light wave in the vacuum, but in practical applications, the laser wavelength will change with the influence of the air refractive index and the refractive index of air is greatly affected by the environment. This will have a great influence on the measurement results of the high-precision and high-resolution nano-displacement measurement system. Therefore, it is necessary to correct the air refractive index to compensate the laser wavelength. In this paper, the air refractive index in the initial measurement is obtained by using the Edlen empirical formula. Then the relationship between the current air refractive index and the initial air refractive index is obtained by using the wavelength compensation unit to achieve the automatic real-time compensation of the wavelength. The wavelength compensation component is mainly composed of an interference mirror and a fixed length etalon. Through the measurement of air refractive index and the experiment of compensation, the feasibility of the method is confirmed. The relative error after wavelength compensation is less than 0.03% relative to the relative error before compensation.
This paper presents the control and non-linear calibration of large-scale two-dimensional nanometer displacement stage. The stage consists of a monolithic compliant mechanism, which using flexible hinge superimposed branch as a transmission part, driven by three piezoelectric actuators, To certify excellent performance of the stage, a micro-displacement measurement system which based on the measurement principle of a laser interferometer was setted up, then comparison of several stage parameters accomplished between before and after calibration. Based on the measurement of optical path and composition of dual-frequency laser interferometer, a experimental study on nano-positiong stage was carried out. The non-linear calibration method which based on newton-steffensen accelerated iteration are described; The accuracy of the calibration method was verified through experiments. Experiments show that: before calibration, the maximum nonlinearity error of x-axis and y-axis were 4.012μm and 2.875μm. after calibration, the maximum non-linearity of the x-axis is 8 nm and the maximum nonlinearity error of the y-axis is 10 nm, Meanwhile, a mathematical model is established to calculate the coupled displacement and yaw angle, The actual coupled displacement and yaw angle of X/Y were limited to 380nm and 1.4μrad.
Dual-probe Atomic Force Microscope (AFM) can effectively eliminate the influence of the probe size on measurement of the line width, and realize true three-dimensional measurement. Novel dual-probe AFM consists of probe system, scanning system, alignment system and displacement measurement system. As displacement measurement system, the interferometers are added to the novel dual-probes AFM. In order to simplify the dual-probe AFM structure, self-sensing tuning fork probe is used. Measurement method has two steps: the first step is to align two probes and obtain the reference point; the second step is to scan two sides of measured line by two probes separately, and calculate the line width value according to the reference point. In the alignment of two probes, the alignment method is improved by using the edge alignment and the feedback scanning alignment.
The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation’s patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in “approach-withdraw” experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.
In order to realize high accuracy measurement of the physical dimension of unit cells in a crystal lattice, the measurement accuracy analysis for crystal plane spacing of nitride epitaxial layer is discussed. An angular analysis for X-ray diffractometer system is established and the measurement uncertainty from the experimental apparatus, measurement method are also analyzed. Experimental results indicate that the accuracy of the system’s angular can get U = ±0.01° (k=2) and the measuring accuracy of lattice plane spacing is within 0.01% of the d-spacing. These results represent an improvement in the existing measurement capabilities by more than an order of magnitude and make more numerous systematic effects visible and reproducible.
KEYWORDS: Control systems, Control systems design, Signal generators, Data acquisition, Interferometers, LabVIEW, Ceramics, Metrology, Interfaces, Human-machine interfaces
A control and measuring system of two-dimensional nanopositioning stage is designed for the multiple selection and combinations control based on LabVIEW. The signal generator of the system can not only generate the commonly used control signals such as sine, square, triangle and sawtooth waves, but also generate special signals such as trapezoidal wave and step wave with DAQ data acquisition card. The step wave can be triggered by the other signals for the strict timing corresponding relation between X-Y control signals. Finally, the performance of the control system of two-dimensional nanopositioning stage is conducted by the heterodyne interferometer. The results show that the operation of the system is stable and reliable and the noise peak - valley value is superior to 2nm while the stage moving with 6nm step. The system can apply to the field requiring the precise control to the positioning stage in nano-measurement and metrology.
A small forest-ball was manufactured and calibrated using CMM F25. An industrial CT called Metrotom1500 was calibrated by the small forest-ball and another big forest-ball produced by Carl Zeiss. These two forest-balls were separately measured at two different magnifications of the industrial CT, and the measurement results could meet the maximum permissible error of Metrotom1500.
Similar to traditional CMM, probing error of industrial CT is used for assessing the 3D measurement error of the machine in a very small measurement volume. A research on the assessment of probing error of industrial CT is conducted here. Lots of assessment tests are carried out on the industrial CT Metrotom1500 in the National institute of metrology, using standard balls with different size and materials. The test results demonstrate that probing error of industrial CT can be affected seriously by the measurement strategy and standard balls. According to some further analysis about the test results, the assessment strategy of industrial CT’s probing error is concluded preliminary, which can ensure the comparability of the assessment results in different industrial CT system.
The nonlinearity of the interferometer is an essential error in nanoscale measurements influenced by anisotropic gain and nonorthogonality of imperfect polarization components. In this paper, polarization error and the corresponding nonlinearity correction method are studied. The paper is divided into two parts, in the first part, main research focuses on the polarization mixing effect of multi-pass interferometer, besides this, polarization beam splitter and retardation plate are also analyzed, then a final synthetic evaluation is obtained through Jones matrix. In the second part, a harmonic separation method of interferometer signals is researched, the method first decomposes signals into Fourier series, then uses least square fitting to estimate coefficients of main terms of series. In the correction process, the primary phase angle is obtained through coefficients of base series and trigonometric formulas; the finer phase angle is obtained through coefficients of harmonics and Taylor expansion. Experimental results demonstrate that the nonlinearity of homodyne interferometer is significantly reduced in nanometer measurements.
The surface roughness at micro/nano scale is essential in the quality of the optical surface. In quantitative
characterization of the roughness surfaces, SPM instruments are widely used due to its ultra-high resolution and powerful
performance. However, drift inevitably exist in SPM measurement and it can distort the quantitative characterization. To
evaluate the SPM measurements of roughness surface more accurately, both the influence discipline of drift on random
surface measurement and the development of effective correction methods need to be studied. Toward this purpose, SPM
imaging of roughness surface with the presence of drift is simulated and influence discipline to roughness surface
parameters was analyzed. Besides, counter-scanning correction method based on identification and matching of feature
points was used to correct the roughness surface. Both simulation and experiment verified the effectiveness of the
employed method. Experimental verification was conducted using roughness reference specimen with specially designed
and processed structural parameters.
To study the different measurement results come from different kinds of instruments for the thin film thickness measurement, a serial of the thin film thickness standard samples with single layer are developed, these thickness values are about from 5 nm to more than 100 nm. These standard samples designed specially can be calibrated by X- ray reflectometry, and also can be calibrated by some kinds of 3D surface profiler including some non-contact optical profilometers, stylus contact surface profilometers and scanning probe microscopies, because some specific film graphs are made in some zones on the layer. It is fund through some measure experiments comparison done that the film thickness measurement uncertainty is small than 1nm by X- ray reflectometry, and more than 2~10 nm by other measurement instruments. And then, to analyze the reasons for different measure methods have different values and uncertainties for the same layer thickness standard, such as the unperfected graphs influence of film thickness on the standard samples and the size and shape of probe tip for contact measure instrument, even including the difference of performance of the measure systems and computational approaches to the film thickness.
In order to calibrate the critical dimensional (CD) uncertainty of lithography masks in semiconductor manufacturing, NIM is building a two dimensional metrological UV microscope which has traceable measurement ability for nanometer linewidths and pitches. The microscope mainly consists of UV light receiving components, piezoelectric ceramics (PZT) driven stage and interferometer calibration framework. In UV light receiving components they include all optical elements on optical path. The UV light originates from Köhler high aperture transmit/reflect illumination sources; then goes through objective lens to UV splitting optical elements; after that, one part of light attains UV camera for large range calibration, the other part of light passes through a three dimensional adjusted pinhole and is collected by PMT for nanoscale scanning. In PZT driven stage, PZT stick actuators with closed loop control are equipped to push/pull a flexural hinge based platform. The platform has a novel designed compound flexural hinges which nest separate X, Y direction moving mechanisms within one layer but avoiding from mutual cross talk, besides this, the hinges also contain leverage structures to amplify moving distance. With these designs, the platform can attain 100 μm displacement ranges as well as 1 nm resolution. In interferometer framework a heterodyne multi-pass interferometer is mounted on the platform, which measures X-Y plane movement and Z axis rotation, through reference mirror mounted on objective lens tube and Zerodur mirror mounted on PZT platform, the displacement is traced back to laser wavelength. When development is finished, the apparatus can offer the capability to calibrate one dimensional linewidths and two dimensional pitches ranging from 200nm to 50μm with expanded uncertainty below 20nm.
KEYWORDS: Atomic force microscopy, Edge detection, Charge-coupled devices, Control systems, Calibration, 3D metrology, Quartz, Detection and tracking algorithms, Atomic force microscope, Optical resolution
Atomic force microscope (AFM) with dual probes that operate together can measure both side walls excellently at the same time, which virtually eliminates the prevalent effect of probe width that contributes a large component of uncertainty in measurement results and finally obtains the critical dimension (CD)(e.g. the linewidth) through data synthesis. In calibration process, the dual probes must contact each other in advance, which realizes the alignment in the three dimensions, to establish a zero reference point and ensure the accuracy of measurement. Because nowadays the optical resolution of advanced lens have exceeded micrometer range, and the size of probes is within micro level, it is possible to acquire dual probes images in both horizontal and vertical directions, through which the movement of the probes can be controlled in time. In order to further enhance the alignment precision, sub-pixel edge detection method based on Zernike orthogonal moment is used to obtain relative position between these two probes, which helps the tips alignment attains sub-micron range. Piezoelectric nanopositioning stages calibrated by laser interferometer are used to implement fine movement of the probes to verify the accuracy of the experimental results. To simplify the system, novel self-sensing and self-actuating probe based on a quartz tuning fork combined with a micromachined cantilever is used for dynamic mode AFM. In this case, an external optical detection system is not needed, so the system is simple and small.
KEYWORDS: Finite element methods, Sensors, Atomic force microscope, Feedback signals, Capacitance, Atomic force microscopy, Signal analysis, Calibration, Electrodes, Amplifiers
Atomic force microscope is one of indispensable measurement tools in nano/micronano precision manufacture and critical dimension measurement. To expand its industry application, a novel head and system are newly designed combined with Nanosensors cooperation’s patented probe — Akiyama probe, which is a self-sensing probe. The modal analysis and resonance frequency are obtained by finite element(FE) simulations. Using the Locked-in amplifier, the effective and available signal can be abtained. Through the experiment analysis, the retracting and extending curve reflects the tip and sample interaction. Furthermore, the measurement on the calibrated position system demonstrates that the whole system resolution can reach the nanometer scale.
The atomic force microscope (AFMs) is widely used in nanotechnology research and industry. To ensure the quantity consistency, the measurement precision of these machines must be calibrated and trace back to SI international unit. In the calibration process, first the standard grating pitch artifact is calibrated by metrological atomic force microscope which has the direct tracing capability; then the grating pitch artifact is transferred to calibrate the common AFMs. Because the importance of metrological atomic force microscope in nanometer tracing, the NIM of China has developed a large range metrological atomic force microscope with 50mm×50mm×2mm scan area. In this paper, the structure and performance of this instrument will be introduced briefly. The instrument utilizes a series of novel designs like hybrid air bearing and sliding guide platform, three dimensional orthogonal piezo scanner head, multi-pass interferometer and Fourier harmonic components separation method to achieve both high precision measurement in small area and fast measurement in large area. As a metrological instrument, the error sources and uncertainties of mAFM are also analyzed, theoretical analysis and experiments show the standard uncertainty of the mAFM is less than 2nm in small range and 20nm in large range
A large range multi-functional metrological atomic force microscope based on optical beam deflection method has been set up at NIM one year ago. Being designed intended to make a traceable measurement of standard samples, the machine uses three axes stacked piezoceramic actuators, each axis with a pair of push-pull piezo operated at opposite phases to make orthogonal scanning with maximized dimensional up to 50×50×2mm3. The stage displacement is measured by homodyne interferometer framework in x,y,z direction, from which beams are aligned to intersect at cantilever tip to avoid Abbe error, an eight times optical path multiplier interferometer mirror is researched to enhance fringe resolution. There is also a new compact AFM head integrated with LD, quadrant PD, cantilever, optical path and microscope, the head uses special track lens group to guarantee laser spot focused and static on the back of the cantilever, no matter whether or not the cantilever have lateral movements; similarly, reflect beam also focused and static in the center of quadrant detector through convergence lens group, assumed no cantilever bending on vertical direction. Attribute to above design, the AFM have a resolution up to 0.5nm. In the paper, further improvement is described to reduce the influence of parasitic interference caused by reflection from sample surface using laser multimode modulation, the results shows metrological AFM have a better performance in measuring step, lateral pitch, line width, nanoroughness and other nanoscale structures.
Interferometer is widely used in precise displacement measurement. Nonlinearity of interferometer is one of the major limits when using interferometers in nanometer displacement measurement. Nonlinearity is caused by phase mixing in homodyne interferometers due to the imperfect of polarization optical components. Both the detection part and interferometer part cause nonlinearity. In this study, the polarization mixing effect of multi-pass interferometer caused by the interferometer part is analyzed by Jones matrix. The effects of polarization beam splitter and wave plate on the nonlinearity are studied. The results show that the polarization mixing effect in multi-pass interferometers cause different orders of frequency components. The nonlinearity error is asymmetry with different harmonic components compared to that caused by the detection part.
A long range metrological atomic force microscope (AFM) has been developed at NIM. It aims to realize a maximum measurement volume of 50mm×50mm×2mm with an uncertainty of a few tens of nanometers in the whole range. In compliance with Abbe Principle, the instrument is designed as a sample-scanning type. The sample is moved by a 6-DOF piezostage in combination with a hybrid slide-air bearing stage for long scanning range. Homodyne interferometers with four passes attached to a metrological frame measure relative displacement between the probe and sample thus the instrument is directly traceable to the SI. An AFM head is developed as the measuring head for the instrument. Considering accuracy and dynamic performance of the instrument, it is designed to be capable of scanning perpendicularly in a range of 5μm×5μm×5μm with a 3-DOF piezostage. Optical beam deflection method is used and a minimum of components are mounted on the moving part. A novel design is devised so that the photodetector is only sensitive to the deflection of cantilever, but not the displacement of the head. Moving manner of the head varies with scanning range and mode of the instrument. Results of different measurements are demonstrated, showing the excellent performance of the instrument.
Atomic force microscopy (AFM) is most widely applied in scientific research and industrial production. AFM is a scanning probe imaging and measuring device, useful for physical and chemical studies. Depends on its basic structure, microscopic surface pattern can be measured and captured by mechanically scanning. Its vertical and horizon resolution can reach to 0.01nm and 0.1nm. Commonly the measurement values of commercial AFM are directly from scanning piezoelectric tube, so that it not a traceable value. In order to solve the problem of commercial AFM’s traceability, step height standard references are applied to calibrate the piezoelectric ceramic housing in scanning tube. All of the serial of step height standard references, covering the commercial AFM vertical scale, are calibrated by Metrology AFM developed by National Institute of Metrology (NIM), China. Three interferometers have been assembled in its XYZ axis, therefore the measurement value can directly trace to laser wavelength. Because of nonlinear characteristic of PZT, the method of segmental calibration is proposed. The measurement scale can be divided into several subsections corresponding to the calibrated values of the series of step height standards references. By this method the accuracy of measurements can be ensured in each segment measurement scale and the calibration level of the whole instrument can be promoted. In order to get a standard step shape by commercial AFM, substrate removal method is applied to deal with the bow shape problem.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.