KEYWORDS: Sensors, Modulation transfer functions, Selenium, X-rays, X-ray detectors, Digital mammography, Image acquisition, Digital breast tomosynthesis, Digital imaging, Signal detection
The purpose of this work is to report the performance of an amorphous selenium (a-Se) based flat-panel x-ray imager under development for application in digital breast tomosynthesis. This detector is designed to perform both in the conventional Full Field Digital Mammography (FFDM) mode and the tomosynthesis mode. The large area 24 x 29 cm detector achieves rapid image acquisition rates of up to 4 frames per second with minimal trapped charge induced effects such as ghost or lag images of previously acquired objects.
In this work, a new a-Se/TFT detector layer structure is evaluated. The design uses a top conductive layer in direct contact with the a-Se x-ray detection layer. The simple structure has few layers and minimal hole and electron trapping effects. Prototype detectors were built to investigate the basic image performance of this new a-Se/TFT detector. Image signal generation, image ghosting, image lag, and detector DQE were studied.
For digital mammography applications, the residual image ghosting was less than 1% at 30 seconds elapsed time. DQE, measured at a field of 5.15 V/um, showed significantly higher values over previously reported data, especially at low exposure levels. For digital breast tomosynthesis, the image lag at dynamic readout rate was < 0.6 % at 0.5-second elapsed time. A prototype tomosynthesis system is being developed utilizing this new a-Se/TFT detector.
Studies of low-frequency resistance noise demonstrate that glassy freezing occurs in a two-dimensional electron system in silicon in the
vicinity of the metal-insulator transition (MIT). The width of the metallic glass phase, which separates the 2D metal and the (glassy) insulator, depends strongly on disorder, becoming extremely small
in high-mobility (low-disorder) samples. The glass transition is manifested by a sudden and dramatic slowing down of the electron dynamics, and by a very abrupt change to the sort of statistics characteristic of complicated multistate systems. In particular, the behavior of the second spectrum, an important fourth-order noise
statistic, indicates the presence of long-range correlations between fluctuators in the glassy phase, consistent with the hierarchical picture of glassy dynamics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.