KEYWORDS: Robots, Databases, Control systems, Data modeling, Neural networks, Mobile robots, Computer programming, Complex systems, Sensors, Systems modeling
The purpose of this paper is to discuss the challenge of engineering robust intelligent robots. Robust
intelligent robots may be considered as ones that not only work in one environment but rather in all types of
situations and conditions. Our past work has described sensors for intelligent robots that permit adaptation
to changes in the environment. We have also described the combination of these sensors with a "creative
controller" that permits adaptive critic, neural network learning, and a dynamic database that permits task
selection and criteria adjustment. However, the emphasis of this paper is on engineering solutions which
are designed for robust operations and worst case situations such as day night cameras or rain and snow
solutions. This ideal model may be compared to various approaches that have been implemented on
"production vehicles and equipment" using Ethernet, CAN Bus and JAUS architectures and to modern,
embedded, mobile computing architectures. Many prototype intelligent robots have been developed and
demonstrated in terms of scientific feasibility but few have reached the stage of a robust engineering
solution. Continual innovation and improvement are still required. The significance of this comparison is
that it provides some insights that may be useful in designing future robots for various manufacturing,
medical, and defense applications where robust and reliable performance is essential.
KEYWORDS: Databases, Robots, Control systems, Data modeling, Computer programming, Neural networks, Mobile robots, Complex systems, Systems modeling, Navigation systems
History shows that problems that cause human confusion often lead to inventions to solve the problems,
which then leads to exploitation of the invention, creating a confusion-invention-exploitation cycle.
Robotics, which started as a new type of universal machine implemented with a computer controlled
mechanism in the 1960's, has progressed from an Age of Over-expectation, a Time of Nightmare, an Age
of Realism, and is now entering the Age of Exploitation.
The purpose of this paper is to propose architecture for the modern intelligent robot in which sensors permit
adaptation to changes in the environment are combined with a "creative controller" that permits adaptive
critic, neural network learning, and a dynamic database that permits task selection and criteria adjustment.
This ideal model may be compared to various controllers that have been implemented using Ethernet, CAN
Bus and JAUS architectures and to modern, embedded, mobile computing architectures. Several
prototypes and simulations are considered in view of peta-computing. The significance of this comparison
is that it provides some insights that may be useful in designing future robots for various manufacturing,
medical, and defense applications.
The purpose of this paper is to introduce a concept of eclecticism for the design, development, simulation
and implementation of a real time controller for an intelligent, vision guided robots. The use of an eclectic
perceptual, creative controller that can select its own tasks and perform autonomous operations is
illustrated. This eclectic controller is a new paradigm for robot controllers and is an attempt to simplify the
application of intelligent machines in general and robots in particular. The idea is to uses a task control
center and dynamic programming approach. However, the information required for an optimal solution
may only partially reside in a dynamic database so that some tasks are impossible to accomplish. So a
decision must be made about the feasibility of a solution to a task before the task is attempted. Even when
tasks are feasible, an iterative learning approach may be required. The learning could go on forever. The
dynamic database stores both global environmental information and local information including the
kinematic and dynamic models of the intelligent robot. The kinematic model is very useful for position
control and simulations. However, models of the dynamics of the manipulators are needed for tracking
control of the robot's motions. Such models are also necessary for sizing the actuators, tuning the
controller, and achieving superior performance. Simulations of various control designs are shown. Much of
the model has also been used for the actual prototype Bearcat Cub mobile robot. This vision guided robot
was designed for the Intelligent Ground Vehicle Contest. A novel feature of the proposed approach lies in
the fact that it is applicable to both robot arm manipulators and mobile robots such as wheeled mobile
robots. This generality should encourage the development of more mobile robots with manipulator
capability since both models can be easily stored in the dynamic database. The multi task controller also
permits wide applications. The use of manipulators and mobile bases with a high-level control are
potentially useful for space exploration, certain rescue robots, defense robots, medical robotics, and robots
that aids older people in daily living activities.
KEYWORDS: Databases, Data modeling, Control systems, Mobile robots, Global Positioning System, Sensors, Complex systems, Neural networks, Robot vision, Motion models
The purpose of this paper is to describe the design, development and simulation of a real time controller for an intelligent, vision guided robot. The use of a creative controller that can select its own tasks is demonstrated. This creative controller uses a task control center and dynamic database. The dynamic database stores both global environmental information and local information including the kinematic and dynamic models of the intelligent robot. The kinematic model is very useful for position control and simulations. However, models of the dynamics of the manipulators are needed for tracking control of the robot's motions. Such models are also necessary for sizing the actuators, tuning the controller, and achieving superior performance. Simulations of various control designs are shown. Also, much of the model has also been used for the actual prototype Bearcat Cub mobile robot. This vision guided robot was designed for the Intelligent Ground Vehicle Contest. A novel feature of the proposed approach is that the method is applicable to both robot arm manipulators and robot bases such as wheeled mobile robots. This generality should encourage the development of more mobile robots with manipulator capability since both models can be easily stored in the dynamic database. The multi task controller also permits wide applications. The use of manipulators and mobile bases with a high-level control are potentially useful for space exploration, certain rescue robots, defense robots, and medical robotics aids.
This paper describes the development of PD, PID Computed-Torque (CT), and a PD digital motion controller for the autonomous navigation of a Wheeled Mobile Robot (WMR) in outdoor environments. The controllers select the suitable control torques, so that the WMR follows the desired path produced from a navigation algorithm described in a previous paper. PD CT, PID CT, and PD digital controllers were developed using a linear system design procedure to select the feedback control signal that stabilizes the tracking error equation. The torques needed for the motors were computed by using the inverse of the dynamic equation for the WMR. Simulation software was developed to simulate the performance and efficiency of the controllers. Simulation results verified the effectiveness of the controllers under different motion trajectories, comparing the performance of the three controllers shows that the PD digital controller was the best where the tracking error did not exceed .05 using 20 msec sample period. The significance of this work lies in the development of CT and digital controllers for WMR navigation, instead of robot manipulators. These CT controllers will facilitate the use of WMRs in many applications including defense, industrial, personal, and medical robots.
KEYWORDS: Databases, Robots, Control systems, Mobile robots, Data modeling, Neural networks, Complex systems, Computer programming, Intelligence systems, Process control
The purpose of this paper is to describe the concept and architecture for an intelligent robot system that can adapt, learn and predict the future. This evolutionary approach to the design of intelligent robots is the result of several years of study on the design of intelligent machines that could adapt using computer vision or other sensory inputs, learn using artificial neural networks or genetic algorithms, exhibit semiotic closure with a creative controller and perceive present situations by interpretation of visual and voice commands. This information processing would then permit the robot to predict the future and plan its actions accordingly. In this paper we show that the capability to adapt, and learn naturally leads to the ability to predict the future state of the environment which is just another form of semiotic closure. That is, predicting a future state without knowledge of the future is similar to making a present action without knowledge of the present state. The theory will be illustrated by considering the situation of guiding a mobile robot through an unstructured environment for a rescue operation. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots.
Intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths to accomplish a variety of tasks. Such machines have many potential useful applications in medicine, defense, industry and even the home so that the design of such machines is a challenge with great potential rewards. Even though intelligent systems may have symbiotic closure that permits them to make a decision or take an action without external inputs, sensors such as vision permit sensing of the environment and permit precise adaptation to changes. Sensing and adaptation define a reactive system. However, in many applications some form of learning is also desirable or perhaps even required. A further level of intelligence called understanding may involve not only sensing, adaptation and learning but also creative, perceptual solutions involving models of not only the eyes and brain but also the mind. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots with examples of adaptive, creative and perceptual learning. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots that could lead to important beneficial applications.
KEYWORDS: Robots, Mobile robots, Databases, Control systems, Device simulation, Sensors, Data modeling, Adaptive control, Process control, Computer programming
Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots.
During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot’s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application.
To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is “beyond the adaptive critic.” A mathematical model of the creative control process is presented that illustrates the use for mobile robots. Examples from a variety of intelligent mobile robot applications are also presented. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots that could lead to many applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.