The Rocket Experiment Demonstration of a Soft X-ray (REDSoX) Polarimeter is a NASA sounding rocket experiment that is designed to demonstrate the technology necessary for measuring linear X-ray polarization as a function of energy below 1 keV. In astrophysics, soft X-ray spectropolarimetry will be used to probe the nature of acceleration mechanisms in quasar jets and to test models of neutron star structure. NASA Marshall Space Flight Center (MSFC) has designed a grazing-incidence mirror module assembly (MMA) for the REDSoX payload and used Finite Element Modelling Software (ANSYS) to perform structural analysis of the design. In this paper we will describe the overall design of the REDSoX MMA, details of the analysis techniques used for predicting factor of safety in the mirror adhesive bonds and structural components, the buckling analysis of the outer housing, and the raytrace technique used to estimate the effect of gravity sag on optical performance during ground testing.
Electroforming replication technology at the Marshall Space Flight Center has a long heritage of producing high-quality, full-shell X-ray mirrors for various applications. Nickel alloys are electroformed onto a super-polished mandrel in the electroforming process and then separated to form the replicated full-shell optic. Various parameters in the electroplating configuration could result in the non-uniformity of the shell’s thickness. Thickness non-uniformities primarily occur due to the non-uniform electric field distribution in the electroforming tank during deposition. Using COMSOL Multiphysics simulations, we studied the electric field distributions during the deposition process. Using these studies, we optimized the electric field distribution and strength inside the tank using customized shields and insulating gaskets on the mandrel. These efforts reduced the thickness non-uniformity from over 20% to under 5%. Improving the thickness uniformity of the shell aids in better mounting and aligning shells in the optics module. Optimization of the electroforming process, in some cases, improved the optical performance of the shells. Using finite element modeling, we estimated the effect of electroforming stress on the figure errors of the replicated optics. We observed that the electroforming stress predominantly affects the figure toward the ends of the optics. We presented COMSOL optimization of the electroforming process and the experimental results validating these simulations. We also discuss modeling experimental results of the replication figure errors due to electroforming stresses.
Evaluating Wolter-like x-ray mirror prescriptions via ray tracing is useful for selecting and optimizing the right mirror prescriptions for a specified application. Moreover, incorporating real metrology data into a ray trace and simulating Point Spread Functions (PSF) allow for performance predictions representative of real manufacturing errors and tolerances. In fulfillment of an internship project, an x-ray ray trace routine using a Monte-Carlo method has been developed to examine different Wolter-like prescriptions and characterize their theoretical performances over a specified field of view. This routine includes the ability to use real metrology data to evaluate the impact of figure error on imaging performance. As a test case, the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) Wolter-I mirror prescription and an equivalent Wolter-Schwarzschild prescriptions were traced and imaging performance of a specified field of view were mapped. Here we present the approach used in this routine, showcase example results, and discuss future goals for expanding the routine to address azimuthally varying figure errors and surface roughness.
NASA / MSFC has made new full-shell NiCo replicated hard X-ray optics
for the fourth flight of the Focusing Optics X-ray Solar Imager
sounding rocket set to observe the sun in March 2023. The new FOXSI-4
high resolution optics were made using enhanced
mandrel polishing techniques incorporating a Zeeko CNC deterministic
polishing machine and an improved module assembly station with in-situ metrology.
FOXSI-4 will fly three new 2-meter focal length high
resolution mirror modules with two shells each. The previous FOXSI-3
optics achieved an angular resolution of 20 arcsec HPD (5 arcsec FWHM) for
ten-shell modules. Initial X-ray measurements of FOXSI-4 shells
before module integration show a performance of 8 arcsec HPD and 3
arcsec FWHM, a substantial improvement over the FOXSI-3 optics. We present the
advances made in the polishing, replication, and assembly processes, and
measurements of the performance of the completed modules taken in the
Marshall 100 meter X-ray beam line.
Technology for a large-area, high-angular resolution mirror module for a future Great Observatory x-ray mission is progressing along different paths. To date, none of these are fully developed. Work at the Marshall Space Flight Center (MSFC) seeks to leverage the benefits of full shell optics while exploring the limits of using shell replication technology for optics production. Here, we provide an updated accounting of spatial-resolution-constraining error terms to give context to recent improvements in MSFC replicated optics, as well as guidance and justification for current and future directions of research and development. Content includes straw-man error allocations for an optical system that is parametrically Lynx-like, where the replicated-optics technology stands relative to these allocations, and methodology for mapping development plans to efficiently identify the limiting factors, and approaches to overcoming these.
Electroforming replication technology at Marshall Space Flight Center has a long heritage of producing high-quality full-shell x-ray mirrors for various applications. Nickel alloys are electroformed onto a super-polished mandrel in the electroforming process, then separated to form the replicated full-shell optic. Various parameters in the electroplating configuration could result in the nonuniformity of the shell’s thickness. Thickness non-uniformities primarily occur due to non-uniform electric field distributions in the electroforming tank during the deposition. Using COMSOL Multiphysics simulations, we have studied the electric field distributions during the deposition process. Using these studies, we have optimized the electric fields inside the tank using customized shields and insulating gaskets on the mandrel. These efforts reduced thickness non-uniformity from over 20% to under 5% percent. Improving the thickness uniformity of the shell aids in better mounting and alignment of shells in the optics module. Optimization of the electroforming process, in some cases, improved the optical performance of the shells. COMSOL optimizing of the electroforming process and the experimental results validating these simulations are presented in this article.
NiC multilayers have been identified as a promising coating design for hard x-ray astrophysical imaging applications enabling bandpass extension beyond the Pt K-edge of approximately 78 keV. However, these coatings are difficult to deposit with low interfacial roughness below a bilayer thickness of about 35 Å. Utilizing a DC magnetron sputtering system, NiC multilayer of varying d-spacings are deposited on flat Si wafers and characterized using 8.048 keV x-ray reflectometry measurements. The residual coating stress is also measured using interferometry. We investigate how deposition parameters affect both the coating quality (i.e. surface/interfacial roughness, density, etc.) and the residual coating stress. From these experimental results conducted on flat substrates, we employ FEM and ray trace simulations to determine how NiC multilayer stress could impact the figure, and therefore performance, of full shell x-ray optics.
The Marshall 100-Meter x-ray Beamline is a user facility for x-ray and EUV optics and instrumentation calibration, located at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Also known as the Stray Light Test Facility, the Marshall-100 provides a range of focal plane detectors, x-ray sources, translation stages, cleanrooms, and high-vacuum level capability to the high-energy astrophysics community. Facility time is made available to Astronomy and Physics Research and Analysis (APRA) funded projects and is also available to the broader community upon request made to beamline management. The beamline has successfully been employed in the calibration of larger scope projects such as the Spectrum-Roentgen-Gamma Astronomical Röentgen Telescope X-ray Concentrator (ART-XC) telescope and the Small Explorer (SMEX) class Imaging X-ray Polarimetry Explorer (IXPE) Space Telescope. Additionally, the Marshall-100 is instrumental in supporting testing related to MSFC’s high-angular resolution optics development program.
W / B4C multilayer (ML) mirrors with varying periodicities ( d ) = 1.6 to 5.4 nm are tested for rapid thermal and temporal stability, which are required for space-based x-ray telescopes for astronomy. The aging effects on the structural parameters over a period of 2 years are assessed through hard x-ray reflectivity (HXR) measurements. Multiwavelength performance of ML mirrors is studied over thermal cycling from −40 ° C to +50 ° C for 1, 3, and 10 days, which simulate the expected temperature variation in the low-earth orbit. The structural parameters of all samples remained nearly constant over the first 2 years. It is observed that the short-period MLs develop a contamination layer over time. Rapid thermal cycling results indicate no change in HXR for all ML mirrors. However, at soft x-rays, there is a reduction in reflectivity after thermal cycling. The variations in optical performance at hard and soft x-ray energies after thermal cycling are due to variation in interface roughness at different spatial frequencies.
A simple design of a soft x-ray polarimeter using multilayer mirrors is presented. A multilayer mirror acts as a linear polarization analyzer for x-rays at incidence angles close to the Brewster angle. The instrument consists of an x-ray concentrator, a set of multilayer mirrors placed at 45 deg from the optical axis, and a detector at Nasmyth focus. The instrument rotating about its optical axis during observations can measure the linear polarization of 0.2- to 0.7-keV x-rays from astronomical sources. The use of a soft x-ray concentrator with geometrical area ∼630 cm2 provides sufficient sensitivity to address key scientific questions. Five different multilayer mirrors placed on a rotating wheel provide the option to measure polarization in any of the five narrow bands spanning the 0.2- to 0.7-keV range. Design and estimated performance of the design are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.