The quantification of cerebrospinal fluid (CSF) in the human brain has shown to play an important role in early postnatal brain development. Extra-axial fluid (EA-CSF), which is characterized by CSF in the subarachnoid space, is a promising marker for the early detection of children at risk for neurodevelopmental disorders, such as Autism Spectrum Disorder (ASD). Yet, non-ventricular CSF quantification, in particular extra-axial CSF quantification, is not supported in the major neuro-imaging software solutions, such as FreeSurfer. Most current structural image analysis packages mask out the extra-axial CSF space in one of the first pre-processing steps. A quantitative protocol was previously developed by our group to objectively measure the volume of total EA-CSF volume using a pipeline workflow implemented in a series of python scripts. While this solution worked for our specific lab, a graphical user interface-based tool is necessary to facilitate the computation of extra-axial CSF volume across a wide array of neuroimaging studies and research labs. This paper presents the development of a novel open-source, cross-platform, user-friendly software tool, called Auto-EACSF, for the automatic computation of such extra-axial CSF volume. Auto-EACSF allows neuroimaging labs to quantify extra-axial CSF in their neuroimaging studies in order to investigate its role in normal and atypical brain development.
Beatriz Paniagua, Sunghyung Kim, Mahmoud Moustapha, Martin Styner, Heather Cody-Hazlett, Rachel Gimple-Smith, Ashley Rumple, Joseph Piven, John Gilmore, Gary Skolnick, Kamlesh Patel
Craniosynostosis, the premature fusion of one or more cranial sutures, leads to grossly abnormal head shapes and pressure elevations within the brain caused by these deformities. To date, accepted treatments for craniosynostosis involve improving surgical skull shape aesthetics. However, the relationship between improved head shape and brain structure after surgery has not been yet established. Typically, clinical standard care involves the collection of diagnostic medical computed tomography (CT) imaging to evaluate the fused sutures and plan the surgical treatment. CT is known to provide very good reconstructions of the hard tissues in the skull but it fails to acquire good soft brain tissue contrast. This study intends to use magnetic resonance imaging to evaluate brain structure in a small dataset of sagittal craniosynostosis patients and thus quantify the effects of surgical intervention in overall brain structure. Very importantly, these effects are to be contrasted with normative shape, volume and brain structure databases. The work presented here wants to address gaps in clinical knowledge in craniosynostosis focusing on understanding the changes in brain volume and shape secondary to surgery, and compare those with normally developing children. This initial pilot study has the potential to add significant quality to the surgical care of a vulnerable patient population in whom we currently have limited understanding of brain developmental outcomes.
The cortical thickness of the mammalian brain is an important morphological characteristic that can be used to investigate and observe the brain’s developmental changes that might be caused by biologically toxic substances such as ethanol or cocaine. Although various cortical thickness analysis methods have been proposed that are applicable for human brain and have developed into well-validated open-source software packages, cortical thickness analysis methods for rodent brains have not yet become as robust and accurate as those designed for human brains. Based on a previously proposed cortical thickness measurement pipeline for rodent brain analysis,1 we present an enhanced cortical thickness pipeline in terms of accuracy and anatomical consistency. First, we propose a Lagrangian-based computational approach in the thickness measurement step in order to minimize local truncation error using the fourth-order Runge-Kutta method. Second, by constructing a line object for each streamline of the thickness measurement, we can visualize the way the thickness is measured and achieve sub-voxel accuracy by performing geometric post-processing. Last, with emphasis on the importance of an anatomically consistent partial differential equation (PDE) boundary map, we propose an automatic PDE boundary map generation algorithm that is specific to rodent brain anatomy, which does not require manual labeling. The results show that the proposed cortical thickness pipeline can produce statistically significant regions that are not observed in the previous cortical thickness analysis pipeline.
The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been widely employed due to its ability to delineate multiple organs at the same time via image registration. The use of multiple atlases and subsequent label fusion techniques has further improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of atlas-based segmentation is still prone to registration errors; for example, the segmentation of in vivo MR images can be less accurate and robust against image artifacts than the segmentation of post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, we propose a multi-object, model-based, multi-atlas segmentation method. We first establish spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a multi-object point distribution model using those particles in order to capture inter- and intra- subject variation among brain structures. The segmentation is obtained by fitting the model into a subject image, followed by label fusion process. Our result shows that the proposed method resulted in greater accuracy than comparable segmentation methods, including a widely used ANTs registration tool.
The recognition of sulcal regions on the cortical surface is an important task to shape analysis and landmark detection. However, it is challenging especially in a complex, rough human cortex. In this paper, we focus on the extraction of sulcal curves from the human cortical surface. The previous sulcal extraction methods are time-consuming in practice and often have a difficulty to delineate curves correctly along the sulcal regions in the presence of significant noise. Our pipeline is summarized in two main steps: 1) We extract candidate sulcal points spread over the sulcal regions. We further reduce the size of the candidate points by applying a line simplification method. 2) Since the candidate points are potentially located away from the exact valley regions, we propose a novel approach to connect candidate sulcal points so as to obtain a set of complete curves (line segments). We have shown in experiment that our method achieves high computational efficiency, improved robustness to noise, and high reliability in a test-retest situation as compared to a well-known existing method.
The quantification of local surface complexity in the human cortex has shown to be of interest in investigating population differences as well as developmental changes in neurodegenerative or neurodevelopment diseases. We propose a novel assessment method that represents local complexity as the difference between the observed distributions of local surface topology to its best-fit basic topology model within a given local neighborhood. This distribution difference is estimated via Earth Move Distance (EMD) over the histogram within the local neighborhood of the surface topology quantified via the Shape Index (SI) measure. The EMD scores have a range from simple complexity (0.0), which indicates a consistent local surface topology, up to high complexity (1.0), which indicates a highly variable local surface topology. The basic topology models are categorized as 9 geometric situation modeling situations such as crowns, ridges and fundi of cortical gyro and sulci. We apply a geodesic kernel to calculate the local SI histogram distribution within a given region. In our experiments, we obtained the results of local complexity that shows generally higher complexity in the gyral/sulcal wall regions and lower complexity in some gyral ridges and lowest complexity in sulcal fundus areas. In addition, we show expected, preliminary results of increased surface complexity across most of the cortical surface within the first years of postnatal life, hypothesized to be due to the changes such as development of sulcal pits.
In this work, we present a novel cortical correspondence method with application to the macaque brain. The correspondence method is based on sulcal curve constraints on a spherical deformable registration using spherical harmonics to parameterize the spherical deformation. Starting from structural MR images, we first apply existing preprocessing steps: brain tissue segmentation using the Automatic Brain Classification tool (ABC), as well as cortical surface reconstruction and spherical parametrization of the cortical surface via Constrained Laplacian-based Automated Segmentation with Proximities (CLASP). Then, initial correspondence between two cortical surfaces is automatically determined by a curve labeling method using sulcal landmarks extracted along sulcal fundic regions. Since the initial correspondence is limited to sulcal regions, we use spherical harmonics to extrapolate and regularize this correspondence to the entire cortical surface. To further improve the correspondence, we compute a spherical registration that optimizes the spherical harmonic parameterized deformation using a metric that incorporates the error over the sulcal landmarks as well as the normalized cross correlation of sulcal depth maps over the whole cortical surface. For evaluation, a normal 18-months-old macaque brain (for both left and right hemispheres) was matched to a prior macaque brain template with 9 manually labeled, major sulcal curves. The results show successful registration using the proposed registration approach. Evaluation results for optimal parameter settings are presented as well.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.