Experimental results concerning the influence of plasmon effect from silver nanoparticles on the organic photovoltaic
device performance are presented. The metallic nanoparticles (NPs) are placed on top of ITO layer using a physical
vapor deposition technique. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) followed by an
interpenetrated poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) blend layer are then
spin-coated. The aluminum electrode is finally evaporated on. Photovoltaic properties compared to devices without NPs
are shown. A spectrophotometric characterization is carried on. Moreover, a ToF-SIMS measurement is performed in
order to obtain the depth chemical profiles of solar cell containing such NPs. Silver NPs diffusion inside other layers of
the cell is investigated.
Experimental and numerical results concerning the influence of silver nanoparticles on the optical absorption of organic
devices are presented. The metallic nanoparticles (NPs) are placed inside an interpenetrated poly(3-hexylthiophene):
[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) layer using a physical vapor deposition technique. An
absorption enhancement by comparison to devices without NPs is shown. An increase of the absorption by annealing is
also observed. Moreover, calculations are performed via a numerical analysis based on a Finite Difference Time Domain
(FDTD) method. We demonstrate that the light absorption can mainly occur inside the active layer instead of inside the
metallic NPs.
Depending on the minimum size of their micro/nano structure, thin films can exhibit very different behaviors and optical
properties. From optical waveguides down to artificial anisotropy, through diffractive optics and photonic crystals, the
application changes when decreasing the minimum feature size.
Rigorous electromagnetic theory can be used to model most of the components but when the size is of a few nanometers,
quantum theory has also to be used. These materials including quantum structures are of particular interest for other
applications, in particular for solar cells, because of their luminescent and electronic properties.
We show that the properties of electrons in multiple quantum wells can be easily modeled with a formalism similar to
that used for multilayer waveguides. The effects of different parameters, in particular coupling between wells and well
thickness dispersion, on possible discrete energy levels or energy band of electrons and on electron wave functions is
given. When such quantum confinement appears the spectral absorption and the extinction coefficient dispersion with
wavelength is modified. The dispersion of the real part of the refractive index can then be deduced from the Kramers-
Krönig relations. Associated with homogenization theory this approach gives a new model of refractive index for thin
films including quantum dots. Absorption spectra of samples composed of ZnO quantum dots in PMMA layers are in
preparation are given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.