Graphene has unique optoelectronic properties and potential applications in improved infrared (IR) photodetectors. Due to its Dirac cone structure, graphene exhibits broadband light absorption and rapid responsivity. In addition, unlike conventional quantum photomaterials, graphene can be synthesized inexpensively via a non-toxic process. Although graphene has advantages in IR photodetector applications, graphene photodetectors have shown low responsivity due to their minimal IR absorption (just 2.3%) and also require cooling. Therefore, there is considerable interest in enhancing the responsivity of graphene photodetectors operating at room temperature so that their advantages can be employed in IR applications. The present work demonstrates room temperature, high-responsivity, long-wavelength infrared (LWIR) graphene photodetectors. These devices operate on the photogating effect, using a lithium niobate (LiNbO3) substrate with enhancement of the photogating via a pyroelectric effect in the substrate in conjunction with a SiN layer. This effect significantly modulates the back-gate voltage to increase the photoresponse by a factor of approximately 600 compared to that for a conventional graphene photodetector. This work also found a change in the type of charge carrier with variations in temperature, which was attributed to a large shift in the Dirac point owing to the strong photogating effect. The results of this study are expected to contribute to the future realization of high-responsivity, low-cost LWIR photodetectors for applications such as thermal imaging, medical care and gas analysis.
Graphene infrared (IR) photodetectors are promising devices that take advantage of the unique optoelectronic properties of graphene, such as broadband light absorption, rapid response, and high chemical stability. Despite its advantages, graphene has a low absorbance of 2.3%, which limits its photoresponsivity. We have previously reported the responsivity enhancement of graphene middle wavelength IR (MWIR) photodetectors using the photogating effect. The photogating effect is induced by photosensitizers located around the graphene channel that generate a large electrical change. The MWIR photoresponse with the photogating effect was enhanced by 100-fold relative to conventional graphene field-effect transistors (FETs). Although our graphene FETs using photogating exhibited ultrahigh responsivity, the dark current was extremely high, as in the case of conventional graphene FETs, because the normally-OFF operation cannot be realized in graphene. Therefore, reducing the high dark current is essential for applying graphene photodetectors to IR applications. We demonstrate dark current reduction and high responsivity MWIR light detection in graphene MWIR photodetectors. The devices consist of graphene FETs with a carrier injection region. The dark current is reduced by applying a bias voltage. The photocarriers injected into the graphene are amplified by the photogating effect induced in the graphene/insulator region. The dark current of the devices was significantly suppressed compared with that of conventional graphene FETs. The photoresponse characteristics were investigated for devices of different structure sizes. The results obtained in this study will contribute to the development of high-performance graphene-based IR image sensors.
We demonstrated a middle-wavelength infrared (MWIR) graphene photodetector using the photogating effect. This effect was induced by photosensitizers situated around a graphene channel that coupled incident light and generated a large electrical charge. The graphene-based MWIR photodetector consisted of a top graphene channel, source–drain electrodes, an insulator layer, and a photosensitizer, and its photoresponse characteristics were determined by current measurements. Irradiation of the graphene channel of the vacuum cooled device by an MWIR laser generated a clear photoresponse, as evidenced by modulation of the output current during irradiation. The MWIR photoresponse with the photogating effect was 100 times greater than that obtained from conventional graphene photodetectors without the photogating effect. The device maintained its MWIR photoresponse at temperatures up to 150 K. The effect of the graphene channel size on the responsivity was evaluated to assess the feasibility of reducing the photodetector area, and decreasing the channel area from 100 to 25 μm2 improved the responsivity from 61.7 to 321.0 AW − 1. The results obtained in our study will contribute to the development of high-performance graphene-based IR imaging sensors.
Graphene-based transistors were investigated as simple photodetectors for a broad range of wavelengths. Graphene transistors were prepared using p-doped silicon (Si) substrates with a SiO2 layer, and source and drain electrodes. Monolayer graphene was fabricated by chemical vapor deposition and transferred onto the substrates, and the graphene channel region was then formed. The photoresponse was measured in the broadband wavelength range from the visible, near-infrared (NIR), and mid- to long-wavelength IR (MWIR to LWIR) regions. The photoresponse was enhanced by the photogating induced by the Si substrate at visible wavelengths. Enhancement by the thermal effect of the insulator layer became dominant in the LWIR region, which indicates that the photoresponse of graphene-based transistors can be controlled by the surrounding materials, depending on the operation wavelength. These results are expected to contribute to provide the key mechanism of high-performance graphene-based photodetectors.
Graphene has remarkable optoelectronic properties and thus would represent a means to improve infrared (IR) photodetectors. As a result of its Dirac-cone structure, graphene exhibits broadband light absorption and a rapid response. Unlike quantum photomaterials, graphene can also be synthesized inexpensively via a non-toxic process. Despite these advantages, graphene-based photodetectors suffer from low responsivity due to the low absorption of graphene of around 2.3%. Therefore, there is a strong demand to enhance the IR responsivity of graphene photodetectors and expand the range of IR applications. In this study, enhancement of the middle-wavelength IR (MWIR) photoresponsivity of graphene photodetectors using the photogating effect was investigated. The photo-gating effect is induced by photosensitizers, which are located around the graphene channel and couple incident light and generate a large electrical change. The graphenebased MWIR photodetectors consisted of a top graphene channel, source-drain electrodes, insulator layer, and photosensitizer. The photoresponse characteristics were investigated through current measurements using a device analyzer. The device was vacuum-cooled and the graphene channel was irradiated with light from a MWIR laser. The device exhibited a clear MWIR photoresponse observed as modulation of the output current during irradiation. The MWIR photoresponse with the photo-gating effect was 100 times higher than that of conventional graphene photodetectors without the photo-gating effect. The device maintained its MWIR photoresponse at temperatures up to 150 K. The results obtained in this study will contribute to the development of high-performance graphene-based IR image sensors.
Graphene, which is carbon arranged in atomically thin sheets, has drawn significant attention in many fields due to its unique electronic and optical properties. Photodetectors are particularly strong candidates for graphene applications due to the need for a broadband photoresponse from the ultraviolet to terahertz regions, high-speed operation, and low fabrication costs, which have not been achieved with the present technology. Here, graphene-based transistors were investigated as simple photodetectors for a broad range of wavelength. The photoresponse mechanism was determined to be dependent on factors such as the operation wavelength, the components near the graphene channel of the photodetector, and temperature. Here, we report the detailed mechanism that defines the photoresponse of graphene-based transistors. Graphene transistors were prepared using doped silicon (Si) substrates with a SiO2 layer, and source and drain electrodes. Single-layer graphene was fabricated by chemical vapor deposition, transferred onto the substrates, and the graphene channel region was then formed. The photoresponse was measured in the visible, near-infrared (NIR), and mid- and long-wavelength IR (MWIR and LWIR) regions. The results indicated that the photoresponse was enhanced by the Si substrate gating at visible wavelengths. Cooling was required at wavelengths longer than NIR due to thermal noise. Enhancement by the thermal effect of the insulator layer becomes dominant in the LWIR region, which indicates that the photoresponse of graphene-based transistors can be controlled by the surrounding materials, depending on the operation wavelength. These results are expected to contribute to the development of high-performance graphenebased photodetectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.