Shape-dependent sensitivity of localized surface plasmon-based biosensing was investigated by combining single-particle protein-sensing and multiple multipole program simulation. Significantly higher sensitivity was observed for tetrahedral particles than spherical ones, which was revealed by careful structural analysis of individually measured particles. The simulation of the corresponding particles with layered protein adsorption model showed consistent optical property and sensitivity, which were explained in terms of the field enhancement at the pointing edges.
Shape dependent sensitivity of localized surface plasmon based biosensing was investigated by combining single particle
protein sensing and multiple multipole program simulation. Significantly higher sensitivity was observed for tetrahedral
particles than spherical ones, which was revealed by careful structural analysis of individually measured particles. The
simulation of the corresponding particles with layered protein adsorption model showed consistent optical property and
sensitivity, which were explained in terms of the field enhancement at the pointing edges.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.