Metaoptics, an emerging field within optics, stands out by manipulating light at subwavelength scales and employing complex structures to control light propagation, interference, polarization, and phase. This technology not only enables the miniaturization of optical components but also introduces advanced functionalities crucial for modern applications including high-resolution imaging, AR/VR and smart-lighting systems. In this presentation, we discuss detailed insights into the design strategy, materials optimization, and fabrication process, which include techniques like lithography, mask design, and etching, all tailored to meet the unique demands of our applications. Our presentation aims to accelerate the development of next-generation miniaturized sensing technologies with unparalleled capabilities.
Environmental sensing is a topic of increasing interest and has triggered much research towards fully integrated sensor solutions. In this context optical measurement approaches in the infrared can provide intrinsic selectivity and sensitivity for integrated gas sensors. Recently, we proposed the possibility of the incorporation of IR-active plasmonic materials to photonic crystal waveguides, which could allow to increase sensitivities and significantly reduce the size of such sensors. Here, we will first present the overall approach and compare two possible specific realizations.
Plasmon-enhanced vibrational spectroscopy, including surface-enhanced infrared absorption spectroscopy (SEIRA) and surface-enhanced Raman scattering (SERS), has attracted great attention in molecular sensing and nano-spectroscopy. In this work, we present a facile in situ-controlled method for the chemical synthesis of patchy SiO2@Au core-shell nanoparticles with multiple plasmonic nanogaps. The multiple sizes and shapes of Au nano-islands on patchy Au nanoshells and their plasmonic coupling exhibit broadband resonances ranging from the near infrared (NIR) region to the middle infrared (MIR) region, making patchy Au particles ensemble suitable for both SEIRA and SERS applications. In the SEIRA application, we demonstrate in situ and real-time monitoring of monolayer of reduced glutathione molecules (GSH) adsorbed on the plasmonic Au surface. By using GSH as the molecular linker, we also demonstrate in situ detection of trace amount of mercuric ions in water at nanomolar level. In the SERS application, we show the applicability of patchy Au nanoparticles for SERS at 785 nm excitation.
We demonstrate the development of colloidal lithography technique to fabricate large-area plasmonic perfect absorbers using Al, which is an earth abundant low-cost plasmonic material in contrast to Au and Ag. Using numerical electromagnetic simulations, we optimize the geometrical parameters of Al perfect absorbers (AlPAs) with resonances at desired wavelengths depending on the applications. The fabricated AlPAs exhibit narrowband absorptions with high efficiency up to 98 %. By tuning AlPAs parameters, the resonance of AlPAs can be tuned from the visible to the middle infrared region. The AlPAs can be applied for spectrally selective infrared devices such as selective thermal emitters, selective surface-enhanced vibrational spectroscopy (SEIRA) for molecular sensing and selective IR detectors. In this report, we demonstrate applications of AlPAs for selective thermal emitters and SEIRA. The results obtained here reveal a simple technique to fabricate scalable plasmonic perfect absorbers as well as their potential applications in optoelectronic and photonic devices.
Nanosphere lithography (NSL) uses self-assembled layers of monodisperse micro-/nano-spheres as masks to fabricate
plasmonic metal nanoparticles. Different variants of NSL have been proposed with the combination with dry etching
and/or angled-deposition. These techniques have employed to fabricate a wide variety of plasmonic nanoparticles or
nanostructures. Here we report another promising extension - moiré nanosphere lithography (MNSL), which
incorporates in-plane twisting between neighboring monolayers, to extend the patterning capability of conventional
NSL. In conventional NSL, the masks, either a monolayer or bilayer, are formed by spontaneous self-assembly.
Therefore, the resulted colloidal crystal configurations are limited. In this work we used sequential stacking of
polystyrene nanosphere monolayers to form a bilayer crystal at the air/water interfaces. During this layer-by-layer
stacking process, a crystal domain in the top layer gains the freedom to positon itself in a relative angle to that in the
bottom layer allowing for the formation of moiré patterns. Subsequent O2 plasma etching results in a variety of complex
nanostructures that have not been reported before. Using etched moiré patterns as masks, we further fabricated the
corresponding gold nanostructures and characterized their scattering optical properties. We believe this facile technique
provides a new strategy to fabricate novel and complex plasmonic nanostructures or metasurfaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.