Surveys in space and time are key to answering outstanding questions in astrophysics. The power to study very large numbers of stars, galaxies, and transient events over large portions of the sky and different time scales has repeatedly led to new breakthroughs. The Nancy Grace Roman Space Telescope (Roman), NASA’s next Astrophysics Flagship mission, elevates wide field and time domain survey observations to previously inaccessible scales. Roman carries the Wide Field Instrument (WFI), which provides visible to near-infrared imaging and spectroscopy with an unprecedented combination of field-of-view, spatial resolution, and sensitivity. When combined with a highly stable observatory and efficient operations, the WFI allows surveys never before possible. These observations will lead to new discoveries in cosmology, exoplanets, and a very wide array of other astrophysics topics ranging from high redshift galaxies to small bodies in the solar system. This paper provides an overview of Roman survey science, connects this science to the design of the WFI, and provides a status update on WFI hardware build and test.
NASA’s Roman Space Telescope’s Wide Field Instrument mosaic detector array of 18 H4RG-10 chips requires regular and uncommonly accurate calibrations to meet its science objectives. In addition to the quasi-Lambertian diffuser used for detector flat-fielding, a novel engineered diffuser is incorporated as part of seven cold stop masks on the science bandpass filters. These engineered diffusers are used to illuminate the focal plane concurrently with an exposure from the observatory, enabling signal-dependent nonlinearity corrections. This presentation demonstrates via experimental data how these diffusers can produce a spatially uniform and smooth illumination profile with increased flux compared to a Lambertian diffuser.
As the next generation of Earth science programs demand more spectral bands, larger fields of view, faster speeds and reduced size, the optical designer will need to adapt to these new requirements. With the advent of manufacturable freeform optical surfaces, compact high-performance optical systems utilizing these surfaces are becoming practical. Freeform optics provide additional degrees of freedom for the optical designer which allow for more compact optical systems of equal performance, potentially operating at faster speeds or over wider fields of view. While numerous design studies on freeform systems have been published, little has been presented in the open literature on as built freeform systems. In this paper we describe the successful outcome of a hardware development program where we designed, built, aligned, and tested a compact WFOV three-mirror telescope with freeform surfaces. It is important that in addition to good optical performance, excellent stray light control is required in Earth remote sensing systems to minimum calibration errors across spectral bands. While compact size is often emphasized in the design of freeform systems, this needs to be balanced against the requirement for good stray light control. As such, the telescope presented in this paper balances the desire for small size with good stray light control. We present the results of the computer-aided alignment of the telescope along with measured stray light performance.
BATC has developed a new stray light test facility (SLTF) and performed initial tests demonstrating its capabilities. The facility interior is nearly all black and is a Class 5 cleanroom. Coupled with a double cylindrical chamber that reflects the specular light away from the instrument under test, the stray light control in the facility is excellent. The facility was designed to be able to test a wide variety of instruments at a range of source angles from in-field to large off-axis angles. Test results have demonstrated PST performance below 1E-9.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.