We investigated a novel approach for building measurement routines for measuring free form optics including fiducials based on an intuitive semi-automatic teach-in mode that requires no programming skills. An initial software version for use with the MarForm MFU 200 Aspheric 3D multi-sensor precision optics measuring station was developed and tested. In this paper, we describe the structure and the workflow of the software and show measurement results of test samples.
Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.
X-ray differential phase-contrast imaging (DPCI) using a Talbot–Lau interferometer at a conventional tube source has continuously found applications since its first demonstration. It requires high aspect ratio grating structures with a feature size in the micrometer range that are fabricated using lithographie, galvanik und abformung technology. To overcome the current limitation in grating area, an exposure strategy—continuous exposure—has been developed. In this case, the mask is fixed in respect to the synchrotron beam and only the substrate is scanned. Thus, the grating area is given by the scanning length which is much larger than the actual mask size. The design, needs, and tolerances to adopt this process of dynamic exposure will be described. Furthermore, the first tests using this method will be presented. Gratings with a metal aspect ratio of 11 and a period of 10 μm were fabricated on an area of 165 mm×65 mm. First imaging results demonstrate the suitability of this method. No differences in the visibility or in x-ray image compared to gratings fabricated by the standard method could be found.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.