This will count as one of your downloads.
You will have access to both the presentation and article (if available).
In this work we propose an intrinsically safe temperature sensor based on fiber optic technology. The presented sensor is entirely passive and benefits from all of the advantages mentioned above, which allows it to be applied in the most demanding environments. The construction of the presented sensor is based on a dedicated microstructured optical fiber which allows both the range and sensitivity of the sensor to be adjusted to a specific application.
For the strain sensor, we used a dual-core microstructured fiber. In the research presented, we take advantage of the technology of fiber post-processing, namely fiber tapering. This treatment, which enables changes in the conditions for interference between supermodes, makes the fiber sensitive to elongation. In the un-tapered section, supermodes do not interfere efficiently (crosstalk <-50 dB), whereas in the tapered section the crosstalk increases significantly (crosstalk = 0 dB meaning all the power from one core can be transferred to the neighboring core), creating a strain sensitive area. The distribution of power between the cores of a multi-core fiber at the output of the sample depends on the elongation of the sample. The strain value can be read off both in the domain of power and wavelength. Research results show that sensor performance can be adjusted by changing the taper length and ratio. The results presented are promising for the construction of a temperature independent strain sensor, whose strain sensitivity (17nm/mε) is far better than optical fiber sensors based on Fiber Bragg Gratings. Meanwhile, the temperature sensitivity is negligible assuring no cross-sensitivity.
Concept of all-fiber bend sensor based on photonic crystal fibers with asymmetric air-hole structure
Superimposed Bragg gratings written into polarization maintaining fiber for monitoring micro-strains
View contact details
No SPIE Account? Create one