A major endeavor of this decade is the direct characterization of young giant exoplanets at high spectral resolution to determine the composition of their atmosphere and infer their formation processes and evolution. We present the implementation and first on-sky results of the HiRISE instrument at the very large telescope (VLT), which combines the exoplanet imager SPHERE with the recently upgraded high resolution spectrograph CRIRES using single-mode fibers. After introducing the global implementation, we will present the status after commissioning and after the first science observing runs. We will, in particular, focus on the performance and th lessons learned during the development, installation and validation.
MICADO is the Multi-AO Imaging Camera for Deep Observations, the first light instrument for the Extremely Large Telescope (ELT). The instrument provides imaging, astrometric, spectroscopic and coronographic observing modes. MICADO will be assisted by a Single-Conjugate Adaptive Optics (SCAO) system and the Multiconjugate adaptive Optics Relay For ELT Observations (MORFEO). The instrument will provide a narrow (19”) and a wide (51”) Field of View. MICADO can operate in the so-called stand-alone mode in the absence of MORFEO with the SCAO correction alone. In this mode, the ELT focal plane is reimaged to the MICADO focal plane via the relay optics (RO). This subsystem consists of an optical bench made of carbon fiber reinforced plastic, the MICADO calibration assembly, a cover to protect all opto-mechanical components on top of the bench, and an optical assembly. The optical assembly of the RO consists of six mirrors, with diameters that go up to around 500 mm. Three of the mirrors are powered, and constitute a Three Mirror Anastigmat (TMA). To be compliant with wavefront error and pupil quality requirements, these mirrors must be aligned to within sub millimeter and sub arcminute tolerances. The remaining mirrors are flat motorized piston, tip-tilt mirrors for interface alignment. In this work, we present the procedure for the alignment of the optical elements of the RO. We present a proof of concept test using dummy mirrors within the already manufactured RO optics mounts, complemented with analyses that extends the results obtained from the test to evaluate the performance of the alignment, finding very promising results within expected tolerances.
MICADO is a first light instrument for the Extremely Large Telescope (ELT), set to start operating later this decade. It will provide diffraction limited imaging, astrometry, high contrast imaging, and long slit spectroscopy at near-infrared wavelengths. During the initial phase operations, adaptive optics (AO) correction will be provided by its own natural guide star wavefront sensor. In its final configuration, that AO system will be retained and complemented by the laser guide star multi-conjugate adaptive optics module MORFEO (formerly known as MAORY). Among many other things, MICADO will study exoplanets, distant galaxies and stars, and investigate black holes, such as Sagittarius A* at the centre of the Milky Way. After their final design phase, most components of MICADO have moved on to the manufacturing and assembly phase. Here we summarize the final design of the instrument and provide an overview about its current manufacturing status and the timeline. Some lessons learned from the final design review process will be presented in order to help future instrumentation projects to cope with the challenges arising from the substantial differences between projects for 8-10m class telescopes (e.g. ESO’s VLT) and the next generation Extremely Large Telescopes (e.g. ESO’s ELT). Finally, MICADO's expected performance will be discussed in the context of the current landscape of astronomical observatories and instruments. For instance, MICADO will have similar sensitivity as the James Webb Space Telescope (JWST), but with six times the spatial resolution.
New generation exoplanet imagers on large ground-based telescopes are highly optimised for the detection of young giant exoplanets in the near-infrared, but they are intrinsically limited for their characterisation by the low spectral resolution of their integral field spectrographs (R < 100). High-dispersion spectroscopy at R ≫ 104 would be a powerful tool for the characterisation of these planets, but there is currently no high-resolution spectrograph with extreme adaptive optics and coronagraphy that would enable such characterisation. With project HiRISE we propose to use fiber coupling to combine the capabilities of two flagship instruments at the Very Large Telescope in Chile: the exoplanet imager SPHERE and the high-resolution spectrograph CRIRES+. The coupling will be implemented at the telescope in early 2023. We provide a general overview of the implementation of HiRISE, of its assembly, integration and testing (AIT) phase in Europe, and a brief assessment of its expected performance based on the final hardware.
In early 2020 the upgraded1 CRIRES2 instrument, was installed at the VLT, however the onset of the global pandemic prevented the completion of some aspects of the installation while characterisation and commissioning had to be conducted with a remote connection from Europe. This resulted in a somewhat experimental, ad-hoc, approach to characterisation that required tight co-ordination between Paranal scientists and the instrument team in Europe. Moreover, with the observatory operating at minimal staffing, we had to find workarounds for some unfinished parts of the installation and adapt our characterisation, calibration and operations strategies accordingly. In particular, we discuss the adaptation made to the metrology strategy that illustrates well the pragmatic and ultimately successful approach adopted for getting CRIRES+ ready for operations.
CRIRES+ extended the capabilities of CRIRES, the CRyogenic InfraRed Echelle Spectrograph. It transformed this VLT instrument into a cross-dispersed spectrograph to increase the wavelength range that is covered simultaneously by a factor of ten. In addition, a new detector focal plane array of three Hawaii 2RG detectors with a 5.3 μm cut-off wavelength replaced the existing detectors. Amongst many other improvements a new spectropolarimetric unit was added and the calibration system has been enhanced. The instrument was installed at the VLT on Unit Telescope 3 beginning of 2020 and successfully commissioned and verified for science operations during 2021, partly remote from Europe due to the pandemic. The instrument was subsequently offered to the community from October 2021 onwards. This article describes the performance and capabilities of this development and presents on sky results.
In 2014 TNG also offered GIANO-B to the scientific community, providing a near-infrared (NIR) cross-dispersed echelle spectrograph covering 0.97 − 2.45 µm at a resolution of 50000. The possibility of simultaneously using GIANO-B together with the HARPS-N spectrograph (GIARPS observing mode) has been particularly appealing especially for the search of exoplanets by means high precision radial velocities. Moreover, GIANO-B triggered the possibility to observe in the NIR the Sun as a star by means of LOCNES, a solar telescope that feeds the spectrograph by a bundle of NIR fibers, for study the activity of the Sun as a star in the NIR wavelength range and its impact on the radial velocity measurements. Both science cases, include high-precision radial-velocity studies down to 3 m/s which demand for specialized, highly accurate wavelength calibration techniques. In this paper we present a developed absorption gas-cell to enable high-precision wavelength calibration for GIANO-B as a modified model of the CRIRES+ Absorbing Cell. We also discuss the manufacturing difficulties and the new design of the vessel. Furthermore, the AIT and the commissioning of the cells is also reported.
We present the novel calibration system of CRIRES+, the premiere high-resolution, cross-dispersed near-infrared (0.9-5.4um) spectrograph at the ESO/VLT. We discuss the system design and strategy for spectral and spatial calibration, as well as the integration into the instrument and its characterization from laboratory measurements and on-sky commissioning. Among the suite of wavelength calibrators is a newly developed, unique infra-red Fabry-Perot etalon (FPI), complementing gas-absorption cells for precision radial velocimetry and atomic emission line sources. The stabilized FPI simultaneously covers the Y-K bands and provides an unprecedented frequency comb of homogeneous, high-contrast spectral features, dramatically enhancing instrument calibration & monitoring. We highlight the technology developments required for stabilized infra-red FPIs and present results of the FPI laboratory characterization, the performance during 1st year regular operations of CRIRES+, and lessons learnt
In this paper we will give an overview of the status of the three instruments and one adaptive optics module that are currently under construction for the European Southern Observatory (ESO) Extremely Large Telescope (ELT). Currently three of those instruments are in the final design stages and the adaptive optics module, MAORY, is rapidly approaching its Preliminary Design Review (PDR). Funding for the laser tomographic module for HARMONI has been secured and that module is now included as part of that overall instrument project. The PDR phase of the instruments has strongly highlighted the ambitious nature of these and all 30-m class instrument projects. Scientifically, managerially and technically, the step up from the 8-m class is challenging. This paper will provide an introduction to all these instruments and will highlight some of the important developments required to realise them.
High resolution spectroscopy enables the detection of atmospheres of exoplanets. To reach the required radial velocity precision of about 1 m/s, calibration with even more precise sources is mandatory. HIRES will employ several calibration sources, the most important ones are an Laser Frequency Comb (LFC) and Fabry-P´erots (FP). The LFC needs to be filtered with a set of FP. One possible solution is to illuminate this set of FP with a broadband light source and use them as calibrators, when they are not used for filtering the LFC. It has been demonstrated that passively-stabilized FP can perform better than 10 cm/s per night. We give an overview of the currently used FP in different surveys and compare their individual features. For the FP which may be used in HIRES we discuss different configuration. We show that the Finesse and FSR of the FP needs to be optimized with regard to the resolution of the spectrograph and we outline how we aim to fulfill the requirements of HIRES.
The paper describes the preliminary design of the MICADO calibration assembly. MICADO, the Multi-AO Imaging CAmera for Deep Observations, is targeted to be one of the first light instruments of the Extremely Large Telescope (ELT) and it will embrace imaging, spectroscopic and astrometric capabilities including their calibration. The astrometric requirements are particularly ambitious aiming for ~ 50 μas differential precision within and between single epochs. The MICADO Calibration Assembly (MCA) shall deliver flat-field, wavelength and astrometric calibration and it will support the instrument alignment to the Single-Conjugate Adaptive Optics wavefront sensor. After a complete overview of the MCA subsystems, their functionalities, design and status, we will concentrate on the ongoing prototype testing of the most challenging components. Particular emphasis is put on the development and test of the Warm Astrometric Mask (WAM) for the calibration of the optical distortions within MICADO and MAORY, the multiconjugate AO module.
GIANO-B is the high resolution near-infrared (NIR) spectrograph of the Telescopio Nazionale Galileo (TNG), which started its regular operations in October 2017. Here we present GIANO-B Online Data Reduction Software (DRS) operating at the Telescope.
GIANO-B Online DRS is a complete end-to-end solution for the spectrograph real-time data handling. The Online DRS provides management, processing and archival of GIANO-B scientific and calibration data. Once the instrument control software acquires the exposure ramp segments from the detector, the DRS ensures the complete data flow until the final data products are ingested into the science archive. A part of the Online DRS is GOFIO software, which performs the reduction process from ramp-processed 2D spectra to extracted and calibrated 1D spectra.
A User Interface (UI) developed as a part of the Online DRS provides basic information on the final reduced data, thus allowing the observer to take decisions in real-time during the night and adjust the observational strategy as needed.
The CRIRES upgrade project (CRIRES+) will improve the performance and observing efficiency of the successful adaptive optics (AO) assisted CRIRES instrument. CRIRES was in operation from 2006 to 2014 at the 8m UT1 (Unit Telescope) of the Very Large Telescope (VLT, Cerro Paranal, Chile) observatory accessing a parameter space (wavelength range and spectral resolution) largely uncharted back then.
CRIRES+ will be commissioned in summer 2018 at UT3 of the VLT. It will provide a spectral resolution of R=50.000 or 100.000 in an accessible wavelength range of 0.95 – 5.3 μm (YJHKLM bands). For each band there is a separate, performance optimized reflection grating as the cross dispersing element. The slit length of 10 arcsec will provide, in combination with the new focal plane array of three HAWAII 2RG detectors, cross-dispersed (7 – 9 orders simultaneous) echelle spectra. In total, the observing efficiency will be improved by a factor of 10 comparing CRIRES+ and CRIRES. Furthermore, the upgraded instrument will be equipped with a number of novel wavelength calibration units, including a gas absorption cell optimized for use in K band and an etalon system. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. The new metrology system will ensure a very high system stability and repeatability. Last but not least the upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities.
The full system is being integrated at ESO and system testing has commenced. Acceptance of the instrument in Europe (PAE) is scheduled for the second quarter of 2018. Commissioning at the VLT observatory will start mid 2018. This article gives an overview of the final configuration of the instrument. The instrument will be available to the astronomic community from Spring 2019 with a call for proposals in October 2018.
After 5 years of operation on the VLT, a large upgrade of CRIRES (the ESO Cryogenic InfraRed Echelle Spectrograph) was decided mainly in order to increase the efficiency. Using a cross dispersion design allows better wavelength coverage per exposure. This means a complete re-design of the cryogenic pre-optic which were including a predispersion stage with a large prism as dispersive element. The new design requires a move of the entrance slit and associated decker toward the first intermediate focal plane right behind the window. Implement 2 functions with high positioning accuracy in a pre-defined and limited space was a real challenge. The design and the test results recorded in the ESO Cryogenic Test Facility are reported in this paper. The second critical function is the grating wheel which positions the 6 cross disperser gratings into the beam. The paper describes the design of the mechanism which includes a detente system in order to guaranty the 5 arc sec positioning reproducibility requested. The design includes also feedback system, based on switches, in order to ensure that the right grating is in position before starting a long exposure. The paper reports on the tests carried out at cryogenic temperature at the sub-system level. It also includes early performances recorded in the instrument along the first phases of the system test.
High-resolution infrared spectropolarimetry has many science applications in astrophysics. One of them is measuring weak magnetic fields using the Zeeman effect. Infrared domain is particularly advantageous as Zeeman splitting of spectral lines is proportional to the square of the wavelength while the intrinsic width of the line cores increases only linearly. Important science cases include detection and monitoring of global magnetic fields on solar-type stars, study of the magnetic field evolution from stellar formation to the final stages of the stellar life with massive stellar winds, and the dynamo mechanism operation across the boundary between fully- and partially-convective stars.
CRIRES+ (the CRIRES upgrade project) includes a novel spectropolarimetric unit (SPU) based on polar- ization gratings. The novel design allows to perform beam-splitting very early in the optical path, directly after the tertiary mirror of the telescope (the ESO Very Large Telescope, VLT), minimizing instrumental polariza- tion. The new SPU performs polarization beam-splitting in the near-infrared while keeping the telescope beam mostly unchanged in the optical domain, making it compatible with the adaptive optics system of the CRIRES+ instrument.
The SPU consists of four beam-splitters optimized for measuring circular and linear polarization of spectral lines in YJ and HK bands. The SPU can perform beam switching allowing to correct for throughput in each beam and for variations in detector pixel sensitivity. Other new features of CRIRES+, such as substantially increased wavelength coverage, stability and advanced data reduction pipeline will further enhance the sensitivity of the polarimetric mode. The combination of the SPU, CRIRES+ and the VLT is a unique facility for making major progress in understanding stellar activity. In this article we present the design of the SPU, laboratory measurements of individual components and of the whole unit as well as the performance prediction for the operation at the VLT.
CRIRES+ is the new high-resolution NIR echelle spectrograph intended to be operated at the platform B of VLT Unit telescope UT3. It will cover from Y to M bands (0.95-5.3um) with a spectral resolution of R = 50000 or R=100000. The main scientific goals are the search of super-Earths in the habitable zone of low-mass stars, the characterisation of transiting planets atmosphere and the study of the origin and evolution of stellar magnetic fields. Based on the heritage of the old adaptive optics (AO) assisted VLT instrument CRIRES, the new spectrograph will present improved optical layout, a new detector system and a new calibration unit providing optimal performances in terms of simultaneous wavelength coverage and radial velocity accuracy (a few m/s). The total observing efficiency will be enhanced by a factor of 10 with respect to CRIRES. An innovative spectro-polarimetry mode will be also offered and a new metrology system will ensure very high system stability and repeatability. Fiinally, the CRIRES+ project will also provide the community with a new data reduction software (DRS) package. CRIRES+ is currently at the initial phase of its Preliminary Acceptance in Europe (PAE) and it will be commissioned early in 2019 at VLT. This work outlines the main results obtained during the initial phase of the full system test at ESO HQ Garching.
KEYWORDS: Calibration, Lamps, Sensors, Spectrographs, Signal to noise ratio, Infrared radiation, Spectroscopy, Signal detection, Data processing, Near infrared spectroscopy
The NIR echelle spectrograph GIANO-B at the Telescopio Nazionale Galileo is equipped with a fully automated online DRS: part of this pipeline is the GOFIO reduction software, that processes all the observed data, from the calibrations to the nodding or stare images. GOFIO reduction process includes bad pixel and cosmic removal, flat-field and blaze correction, optimal extraction, wavelength calibration, nodding or stare group processing. An offline version of GOFIO will allow the users to adapt the reduction to their needs, and to compute the radial velocity using telluric lines as a reference system. GIANO-B may be used simultaneously with HARPS-N in the GIARPS observing mode to obtain high-resolution spectra in a wide wavelength range (383-2450 nm) with a single acquisition. In this framework, GOFIO, as part of the online DRS, provides fast and reliable data reduction during the night, in order to compare the infrared and visible observations on the fly.
Atmospheric composition provides essential markers of the most fundamental properties of giant exoplanets, such as their formation mechanism or internal structure. New-generation exoplanet imagers, like VLT/SPHERE or Gemini/GPI, have been designed to achieve very high contrast (< 15 mag) at small angular separations (<0.500) for the detection of young giant planets in the near-infrared, but they only provide very low spectral resolutions (R < 100) for their characterization. High-dispersion spectroscopy at resolutions up to 105 is one of the most promising pathways for the detailed characterization of exoplanets, but it is currently out of reach for most directly imaged exoplanets because current high-dispersion spectrographs in the near-infrared lack coronagraphs to attenuate the stellar signal and the spatial resolution necessary to resolve the planet. Project HiRISE (High-Resolution Imaging and Spectroscopy of Exoplanets) ambitions to develop a demonstrator that will combine the capabilities of two flagship instruments installed on the ESO Very Large Telescope, the high-contrast exoplanet imager SPHERE and the high-resolution spectrograph CRIRES+, with the goal of answering fundamental questions on the formation, composition and evolution of young planets. In this work, we will present the project, the first set of realistic simulations and the preliminary design of the fiber injection unit that will be implemented in SPHERE.
GIARPS (GIAno and haRPS) is a project devoted to have on the same focal station of the Telescopio Nazionale Galileo (TNG) both high resolution spectrographs, HARPS–N (VIS) and GIANO–B (NIR), working simultaneously. This could be considered the first and unique worldwide instrument providing cross-dispersed echelle spectroscopy at a resolution of 50,000 in the NIR range and 115,000 in the VIS and over in a wide spectral range (0.383−2.45 μm) in a single exposure. The science case is very broad, given the versatility of such an instrument and its large wavelength range. A number of outstanding science cases encompassing mainly extra-solar planet science starting from rocky planets search and hot Jupiters to atmosphere characterization can be considered. Furthermore both instruments can measure high precision radial velocities by means the simultaneous thorium technique (HARPS–N) and absorbing cell technique (GIANO–B) in a single exposure. Other science cases are also possible. GIARPS, as a brand new observing mode of the TNG started after the moving of GIANO–A (fiber fed spectrograph) from Nasmyth–A to Nasmyth–B where it was re–born as GIANO–B (no more fiber feed spectrograph). The official Commissioning finished on March 2017 and then it was offered to the community. Despite the work is not finished yet. In this paper we describe the preliminary scientific results obtained with GIANO–B and GIARPS observing mode with data taken during commissioning and first open time observations.
Order sorting filters had to be coated for the CRyogenic InfaRed Echelle Spectrograph upgrade (CRIRES+)-instrument, a high-resolution IR spectrograph to be set up at ESO’s Very Large Telescope in Chile. Therefore SiO2 was chosen as material with low refractive index. Si and Ge have been investigated as materials with high refractive index, whereby Si has been chosen for the application of the coating. Three types of high-pass filters were deposited with transmission bands starting at 0.96μm, 1.47μm and 2.9μm. These filters need to block effectively all wavelengths between 0.5 μm and the respective band. Therefore, in the blocking range, an optical density above four, or above three for the filter starting at 2.9 μm respectively, had to be achieved. The filter-coatings also needed to survive thermal cycling down to 65K while only introducing a small wave front error. The lower total thickness, compared to coatings consisting of other materials, and the low film-stress are favorable properties for coatings deposited onto prisms and other more complex optical components.
The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory.
The Waltz Spectrograph is a fiber-fed high-resolution échelle spectrograph for the 72 cm Waltz Telescope at the Landessternwarte, Heidelberg. It uses a 31.6 lines/mm 63.5° blaze angle échelle grating in white-pupil configuration, providing a spectral resolving power of R ~ 65,000 covering the spectral range between 450-800nm in one CCD exposure. A prism is used for cross-dispersion of échelle orders. The spectrum is focused by a commercial apochromat onto a 2k×2k CCD detector with 13.5μm per pixel. An exposure meter will be used to obtain precise photon-weighted midpoints of observations, which will be used in the computation of the barycentric corrections of measured radial velocities. A stabilized, newly designed iodine cell is employed for measuring radial velocities with high precision. Our goal is to reach a radial velocity precision of better than 5 m/s, providing an instrument with sufficient precision and sensitivity for the discovery of giant exoplanets. Here we describe the design of the Waltz spectrograph and early on-sky results.
This article describes the works we are doing for modifying the interface between the high resolution infrared spectrograph GIANO (0.97-2.4 micron) and the TNG telescope, passing from a fiber feed configuration to the original design of a direct light-feeding from the telescope to the spectrograph. So doing the IR spectrograph, GIANO, will work in parallel to HARPS-N spectrometer (0.38-0.70 micron), the visible high resolution spectrograph, thanks to a new telescope interface based on a dichroic window that simultaneously feeds the two instrumentes: this is GIARPS (GIAno and haRPS). The scientific aims of this project are to improve the radial velocity accuracy achievable with GIANO, down to a goal of 1 m/s, the value necessary to detect Earth-mass planets on habitable orbits around late-M stars, to implement simultaneous observations with Harps-N and GIANO optimizing the study of planets around cool stars. The very broad wavelengths range is particularly important to discriminate false radial velocity signals caused by stellar activity. We therefore include several absorption cells with different mixtures of gases and a stabilized Fabry Perot cavity, necessary to have absorption lines over the 0.97–2.4 microns range covered by GIANO. The commissioning of GIARPS is scheduled by the end of 2016.
The CRIRES+ project attempts to upgrade the CRIRES instrument into a cross dispersed Echelle spectrograph with a simultaneous recording of 8-10 diffraction orders. In order to transform the CRIRES spectrograph into a cross-dispersing instrument, a set of six reflection gratings, each one optimized for one of the wavelength bands CRIRES+ will operate in (YJHKLM), will be used as cross dispersion elements in CRIRES+. Due to the upgrade nature of the project, the choice of gratings depends on the fixed geometry of the instrument. Thus, custom made gratings would be required to achieve the ambitious design goals. Custom made gratings have the disadvantage, though, that they come at an extraordinary price and with lead times of more than 12 months. To mitigate this, a set of off-the-shelf gratings was obtained which had grating parameters very close to the ones being identified as optimal. To ensure that the rigorous specifications for CRIRES+ will be fulfilled, the CRIRES+ team started a collaboration with the Physikalisch-Technische Bundesanstalt Berlin (PTB) to characterize gratings underconditions similar to the operating conditions in CRIRES+ (angle of incidence, wavelength range).
The respective test setup was designed in collaboration between PTB and the CRIRES+ consortium. The PTB provided optical radiation sources and calibrated detectors for each wavelength range. With this setup, it is possible to measure the absolute efficiency of the gratings both wavelength dependent and polarization state dependent in a wavelength range from 0.9 μm to 6 μm.
CRIRES at the VLT is one of the few adaptive optics enabled instruments that offer a resolving power of 105 from 1 − 5 μm. An instrument upgrade (CRIRES+) is proposed to implement cross-dispersion capabilities, spectro-polarimetry modes, a new detector mosaic, and a new gas absorption cell. CRIRES+ will boost the simultaneous wavelength coverage of the current instrument (~ γ/70 in a single-order) by a factor of 10 in the cross-dispersed configuration, while still retaining a ~> 10 arcsec slit suitable for long-slit spectroscopy. CRIRES+ dramatically enhances the instrument’s observing efficiency, and opens new scientific opportunities. These include high-precision radial-velocity studies on the 3 m/s level to characterize extra-solar planets and their athmospheres, which demand for specialized, highly accurate wavelength calibration techniques. In this paper, we present a newly developed absorption gas-cell to enable high-precision wavelength calibration for CRIRES+. We also discuss the strategies and developments to cover the full operational spectral range (1 − 5 μµm), employing cathode emission lamps, Fabry-Perot etalons, and absorption gas-cells.
Hollow cathode lamps of U and Th are the standard frequency calibrators in astronomical spectrographs. In an effort to
optimize precision radial velocity measurements at near-IR wavelengths for the CARMENES survey, we are
characterizing 12 commercial U-Ne hollow cathode lamps using a high resolution Fourier Transform Spectrograph and
an InGaAs detector to analyze the wavelength range between 950 and 1700 nm. We have recorded spectral atlases of UNe
operated at 8, 10 and 12 mA, which are typical values used at astronomical observatories in order to maximize lamp
lifetimes. In addition to the spectral atlas, we analyze properties like warm-up times, average intensities from lines of
different elements, positions and the width of emission lines, and blends. None of our lamps show strong peculiarities in
the spectra or significant contamination. The identification of the uranium lines is based on the line widths and consistent
with the Redman et al. (2011) catalog. Our line list can add a significant number of lines particularly in the range around
9000 cm-1 (1.1 μm) where the catalog is incomplete because of limited detector sensitivity. We are able to identify the elements emitting additional lines by measuring the line width. The increased number of U lines at wavelengths relevant
to radial velocity surveys can yield a significant improvement in the accuracy of radial velocity measurements.
The CRIRES infrared spectrograph at the European Southern Observatory (ESO) Very Large Telescope (VLT)
facility will soon receive an upgrade. This upgrade will include the addition of a module for performing highresolution
spectropolarimetry. The polarimetry module will incorporate a novel infrared beamsplitter based on
polarization gratings (PGs). The beamsplitter produces a pair of infrared output beams, with opposite circular
polarizations, which are then fed into the spectrograph. Visible light passes through the module virtually
unaltered and is then available for use by the CRIRES adaptive optics system. We present the design of the
polarimetry module and measurements of PG behavior in the 1 to 2.7 μm wavelength range.
CRIRES is one of the few IR (0.92-5.2 μm) high-resolution spectrographs in operation at the VLT since 2006. Despite
good performance it suffers a limitation that significantly hampers its ability: a small spectral coverage per exposure. The
CRIRES upgrade (CRIRES+) proposes to transform CRIRES into a cross-dispersed spectrograph while maintaining the
high resolution (100000) and increasing the wavelength coverage by a factor 10 compared to the current capabilities. A
major part of the upgrade is the exchange of the actual cryogenic pre-disperser module by a new cross disperser unit. In
addition to a completely new optical design, a number of important changes are required on key components and
functions like the slit unit and detectors units. We will outline the design of these new units fitting inside a predefined
and restricted space. The mechanical design of the new functions including a description and analysis will be presented.
Finally we will present the strategy for the implementation of the changes.
CRIRES, the ESO high resolution infrared spectrometer, is a unique instrument which allows astronomers to access a
parameter space which up to now was largely uncharted. In its current setup, it consists of a single-order spectrograph
providing long-slit, single-order spectroscopy with resolving power up to R=100,000 over a quite narrow spectral range.
This has resulted in sub-optimal efficiency and use of telescope time for all the scientific programs requiring broad
spectral coverage of compact objects (e.g. chemical abundances of stars and intergalactic medium, search and
characterization of extra-solar planets). To overcome these limitations, a consortium was set-up for upgrading CRIRES
to a cross-dispersed spectrometer, called CRIRES+. This paper presents the updated optical design of the cross-dispersion
module for CRIRES+. This new module can be mounted in place of the current pre-disperser unit. The new
system yields a factor of >10 increase in simultaneous spectral coverage and maintains a quite long slit (10”), ideal for
observations of extended sources and for precise sky-background subtraction.
High-resolution infrared spectroscopy plays an important role in astrophysics from the search for exoplanets to
cosmology. Yet, many existing infrared spectrographs are limited by a rather small simultaneous wavelength coverage.
The AO assisted CRIRES instrument, installed at the ESO VLT on Paranal, is one of the few IR (0.92-5.2 μm) highresolution
spectrographs in operation since 2006. However it has a limitation that hampers its efficient use: the
wavelength range covered in a single exposure is limited to ~15 nanometers. The CRIRES Upgrade project (CRIRES+)
will transform CRIRES into a cross-dispersed spectrograph and will also add new capabilities. By introducing crossdispersion
elements the simultaneously covered wavelength range will be increased by at least a factor of 10 with respect
to the present configuration, while the operational wavelength range will be preserved. For advanced wavelength
calibration, new custom made absorption gas cells and etalons will be added. A spectro-polarimetric unit will allow one
for the first time to record circularly polarized spectra at the highest spectral resolution. This will be all supported by a
new data reduction software which will allow the community to take full advantage of the new capabilities of CRIRES+.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.