KEYWORDS: Fuzzy logic, Vital signs, Sensors, Beam propagation method, Machine learning, Data processing, Data analysis, Oxygen, Body temperature, Signal processing
The methods of machine learning for real-time detection of abnormal values of the patient's vital signs are considered. The aim is to assess the risk of the disease with worsening of the patient's condition. The system is designed to monitor patients using expert assessments that are included in fuzzy logic rules to compare patient vitals signs with disease risk assessment. Deviation of values from the norm is identified as an "abnormal" class in order to determine the reasons for the worsening of the patient's condition. The integrated platform "m-Health" system for decision making with feedback control allows the patient to be mobile and their vital signs are mapping in the current mode.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.