PurposeChest X-ray (CXR) use in pre-MRI safety screening, such as for lead-less implanted electronic device (LLIED) recognition, is common. To assist CXR interpretation, we “pre-deployed” an artificial intelligence (AI) model to assess (1) accuracies in LLIED-type (and consequently safety-level) identification, (2) safety implications of LLIED nondetections or misidentifications, (3) infrastructural or workflow requirements, and (4) demands related to model adaptation to real-world conditions.ApproachA two-tier cascading methodology for LLIED detection/localization and identification on a frontal CXR was applied to evaluate the performance of the original nine-class AI model. With the unexpected early appearance of LLIED types during simulated real-world trialing, retraining of a newer 12-class version preceded retrialing. A zero footprint (ZF) graphical user interface (GUI)/viewer with DICOM-based output was developed for inference-result display and adjudication, supporting end-user engagement and model continuous learning and/or modernization.ResultsDuring model testing or trialing using both the nine-class and 12-class models, robust detection/localization was consistently 100%, with mAP 0.99 from fivefold cross-validation. Safety-level categorization was high during both testing (AUC ≥ 0.98 and ≥0.99, respectively) and trialing (accuracy 98% and 97%, respectively). LLIED-type identifications by the two models during testing (1) were 98.9% and 99.5% overall correct and (2) consistently showed AUC ≥ 0.92 (1.00 for 8/9 and 9/12 LLIED-types, respectively). Pre-deployment trialing of both models demonstrated overall type-identification accuracies of 94.5% and 95%, respectively. Of the small number of misidentifications, none involved MRI-stringently conditional or MRI-unsafe types of LLIEDs. Optimized ZF GUI/viewer operations led to greater user-friendliness for radiologist engagement.ConclusionsOur LLIED-related AI methodology supports (1) 100% detection sensitivity, (2) high identification (including MRI-safety) accuracy, and (3) future model deployment with facilitated inference-result display and adjudication for ongoing model adaptation to future real-world experiences.
Background: Increases in cancer survival have made understanding the basis of cancer-related cognitive impairment (CRCI) more important. CRCI neuroimaging studies have traditionally used dedicated research brain MRIs in breast cancer survivors with small sample sizes; little is known about other non-CNS cancers. However, there is a wealth of unused data from clinically-indicated MRIs that could be used to study CRCI. Objective: Evaluate brain cortical structural differences in those with non-CNS cancers using clinically-indicated MRIs. Design: Cross-sectional Patients: Adult non-CNS cancer and non-cancer control (C) patients who underwent clinically-indicated MRIs. Methods: Brain cortical surface area and thickness were measured using 3D T1-weighted images. An age-adjusted linear regression model was used and the Benjamini and Hochberg false discovery rate (FDR) corrected for multiple comparisons. Group comparisons were: cancer cases with chemotherapy (Ch+), cancer cases without chemotherapy (Ch-) and subgroup of lung cancer cases with and without chemotherapy vs C. Results: Sixty-four subjects were analyzed: 22 Ch+, 23 Ch- and 19 C patients. Subgroup analysis of 16 LCa was also performed. Statistically significant decreases in either cortical surface area or thickness were found in multiple ROIs primarily within the frontal and temporal lobes for all comparisons. Limitations: Several limitations were apparent including a small sample size that precluded adjustment for other covariates. Conclusions: Our preliminary results suggest that various types of non-CNS cancers, both with and without chemotherapy, may result in brain structural abnormalities. Also, there is a wealth of untapped clinical MRIs that could be used for future CRCI studies.
White matter tractography is non-invasive method to study white matter microstructure within the brain and its connectivity across the different regions. Various neuro-degenerative diseases affect the white matter connectivity in the brain. In order to study the neurodegeneration and localize the affected fiber bundles, it is important to cluster the white matter fibers in an anatomically consistent manner. Clustering white matter fiber bundles in the brain is a challenging problem. The present approaches include region of interest (ROI) based clustering as well as template based clustering. A novel clustering technique using support vector machine framework is introduced. In this method, a conformal volumetric bijective mapping between the brain and the topologically equivalent sphere is established. The white matter fibers are then parameterized in this domain. Such a parameterization also introduces a spatial normalization without requiring any prior registration. We show that such a mapping is useful to learn statistical models of white matter fiber bundles and use it for clustering in a new subject.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.