By combining nanomasking with thermally resistant materials and sublimation in a molecular beam epitaxy reactor, porous (In)GaN layers can be obtained. The advantages and disadvantages of this technique compared to classical electrochemistry methods will be discussed. The porosity can be adjusted from 0 to 1 and the pore depth can be controlled by the sublimation temperature and time. Preferential sublimation occurs at the dislocation position which strongly enhance the photoluminescence properties. As the porosification process by sublimation does not depend on the doping, fully porous light emitting diodes can be demonstrated.
A fraction of a SiNx mono-layer is formed on a GaN layer by exposing the surface to a Si flux. When the sample is heated under vacuum at high temperature (900°C), we observe the sublimation of GaN in the regions uncovered by the thermally resistant SiNx mask. This selective area sublimation (SAS) process can be used for the formation of nanopyramids and nanowires with a diameter down to 4 nm. Also, if InGaN quantum wells are included in the structures before sublimation, InGaN quantum disks with quasi identical sizes in the 3 dimensions of space can be formed using SAS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.