Cryocoolers have long been demonstrated to be a dominant source of vibration that have caused significant problems with AO systems on large telescopes. Existing large telescopes have already imposed strict vibration requirements on instruments in response to existing problems, and have often struggled to achieve them. As the field moves into the next generation telescopes with GMT, TMT and eELT, vibration requirements continue to get ever tighter. Instrument teams must respond to these more demanding requirements by careful selection of cryocoolers and thoughtful design of cryocooler mounts that are matched closely with the specific requirements of the telescope. As we will demonstrate in this paper there is not a one-size-fits-all solution for every instrument and every telescope. In this paper we demonstrate a general method of deriving the required performance for an anti-vibration mounts for cryocoolers. First we characterize a linear Stirling-type cryocooler as a source of vibration, and determine what compliant mounts would be required to make them acceptable for use on the VLT, GMT and TMT. Measurements are taken of vibration from a Cryotel GT linear Stirling cooler (with active vibration cancellation enabled). By comparing the measured vibration against the requirements of each telescope, we are able to determine the required transfer function and therefore the required spring rate for compliant mounts. The results indicate that while some simple rubber mounts may be sufficient for use with the VLT and TMT, but a compliant mount with natural frequency below 14 Hz must be used for GMT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.