The numerous potential applications of UV-induced fiber Bragg gratings (FBGs) in fiber optic sensing and
telecommunication have generated a significant interest in this field in recent years. However, two major factors-the
photosensitivity of the fiber in which the grating is written and the thermal stability of the grating-are of prime
importance in terms of choosing the most appropriate fiber to use and of the long-term functionality of the grating over a
wide range of temperatures. Based on the plasma chemical vapor deposition (PCVD) process, the high Ge (Germanium)
and Ge/B (Germanium/Boron) co-doped photosensitive fiber were developed. It is mature technique that to precise
control the dopant quantity by PCVD process. The photosensitive fibers with different doping composition and doping
concentration have been studied. Based on the experimental results obtained from studies of several kinds of
photosensitive fiber on both the photosensitivity and the temperature sustainability of the FBGs written into them, the
experimental results exhibit that the Boron dopant brings deleterious influence on the FBG's high-temperature
sustainability. The FBG sustainable temperature will become lower than 500°C when the Boron concentration reaches
14% in germanium highly doped photosensitive fiber.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.