We report a new type of all-optical ultrafast laser-scanning microscopy( (at a line-scan rate of 20 MHz) based on a phenomenon called free-space angular-chirp-enhanced delay (FACED). It results in the generation of a reconfigurable array of spatiotemporally encoded virtual pulsed sources, which acts as a scanning laser beam. We demonstrate its application in high-throughput multivariate image-based single-cell analysis (10,000 cells/sec).
We demonstrate ultrafast time-stretch microscopy in, to the best of our knowledge, the shortest wavelength regimes, i.e. 532 nm. This is enabled by a new all-optical ultrahigh-speed laser-scanning technique called free-space angular-chirpenhanced delay (FACED) that achieves a line-scan rate as high as 20 MHz. In contrast to the predominant fiber-based implementation, time-stretch imaging based on FACED allows wavelength-independent and low-loss operations, and more intriguingly reconfigurable all-optical laser-scanning rate. Using this technique, we present high-resolution single-cell images captured in an ultrafast microfluidic flow (1.5m/s). This could unleash numerous cell and tissue imaging applications, e.g. high-throughput image flow cytometry and whole-slide imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.