KEYWORDS: Stray light, Telescopes, Optical coatings, Infrared radiation, Mirrors, Reflectivity, Space telescopes, Neodymium, Infrared telescopes, System on a chip
Effective stray light control is a key requirement for wide dynamic range performance of scientific optical and infrared systems. SOFIA now has over 325 mission flights including extended southern hemisphere deployments; science campaigns using 7 different instrument configurations have been completed. The research observations accomplished on these missions indicate that the telescope and cavity designs are effective at suppressing stray light. Stray light performance impacts, such as optical surface contamination, from cavity environment conditions during mission flight cycles and while on-ground, have proved to be particularly benign. When compared with earlier estimates, far fewer large optics re-coatings are now anticipated, providing greater facility efficiency.
We present a performance report for FLITECAM, a 1-5 μm imager and spectrograph, upon its acceptance and delivery to SOFIA (Stratospheric Observatory for Infrared Astronomy). FLITECAM has two observing configurations: solo configuration and “FLIPO” configuration, which is the co-mounting of FLITECAM with the optical instrument HIPO (PI E. Dunham, Lowell Observatory). FLITECAM was commissioned in the FLIPO configuration in 2014 and flew in the solo configuration for the first time in Fall 2015, shortly after its official delivery to SOFIA. Here we quantify FLITECAM’s imaging and spectral performance in both configurations and discuss the science capabilities of each configuration, with examples from in-flight commissioning and early science data. The solo configuration (which comprises fewer warm optics) has better sensitivity at longer wavelengths. We also discuss the causes of excess background detected in the in-flight FLITECAM images at low elevations and describe the current plan to mitigate the largest contributor to this excess background.
KEYWORDS: Exoplanets, Observatories, Photometry, Stars, Data modeling, Infrared astronomy, Rayleigh scattering, Signal to noise ratio, Point spread functions, Planets
Here, we report on the first successful exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy (SOFIA). We observed a single transit of the hot Jupiter HD 189733 b, obtaining two simultaneous primary transit lightcurves in the B and z′ bands as a demonstration of SOFIA’s capability to perform absolute transit photometry. We present a detailed description of our data reduction, in particular, the correlation of photometric systematics with various in-flight parameters unique to the airborne observing environment. The derived transit depths at B and z′ wavelengths confirm a previously reported slope in the optical transmission spectrum of HD 189733 b. Our results give new insights to the current discussion about the source of this Rayleigh scattering in the upper atmosphere and the question of fixed limb darkening coefficients in fitting routines.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world’s largest airborne observatory, featuring a
2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA’s current instrument
suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band
imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a
0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a
multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for
Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism
spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating
spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution
spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames
Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally
developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add
polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its
instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing
instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future
instrumentation.
We present a status report and early commissioning results for FLITECAM, the 1-5 micron imager and spectrometer for
SOFIA (the Stratospheric Observatory for Infrared Astronomy). In February 2014 we completed six flights with
FLITECAM mounted in the FLIPO configuration, a co-mounting of FLITECAM and HIPO (High-speed Imaging
Photometer for Occultations; PI Edward W. Dunham, Lowell Observatory). During these flights, the FLITECAM modes
from ~1-4 μm were characterized. Since observatory verification flights in 2011, several improvements have been made
to the FLITECAM system, including the elimination of a light leak in the FLITECAM filter wheel enclosure, and
updates to the observing software. We discuss both the improvements to the FLITECAM system and the results from the
commissioning flights, including updated sensitivity measurements. Finally, we discuss the utility of FLITECAM in the
FLIPO configuration for targeting exoplanet transits.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory, carrying a 2.5 m telescope onboard a heavily modified Boeing 747SP aircraft. SOFIA is optimized for operation at infrared wavelengths, much of which is obscured for ground-based observatories by atmospheric water vapor. The SOFIA science instrument complement consists of seven instruments: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), GREAT (German Receiver for Astronomy at Terahertz Frequencies), HIPO (High-speed Imaging Photometer for Occultations), FLITECAM (First Light Infrared Test Experiment CAMera), FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), EXES (Echelon-Cross-Echelle Spectrograph), and HAWC (High-resolution Airborne Wideband Camera). FORCAST is a 5–40 μm imager with grism spectroscopy, developed at Cornell University. GREAT is a heterodyne spectrometer providing high-resolution spectroscopy in several bands from 60–240 μm, developed at the Max Planck Institute for Radio Astronomy. HIPO is a 0.3–1.1 μm imager, developed at Lowell Observatory. FLITECAM is a 1–5 μm wide-field imager with grism spectroscopy, developed at UCLA. FIFI-LS is a 42–210 μm integral field imaging grating spectrometer, developed at the University of Stuttgart. EXES is a 5–28 μm high-resolution spectrograph, developed at UC Davis and NASA ARC. HAWC is a 50–240 μm imager, developed at the University of Chicago, and undergoing an upgrade at JPL to add polarimetry capability and substantially larger GSFC detectors. We describe the capabilities, performance, and status of each instrument, highlighting science results obtained using FORCAST, GREAT, and HIPO during SOFIA Early Science observations conducted in 2011.
We describe the development of a software simulator to support development of the Habitable Zone Planet Finder
Spectrograph (HPF), currently being designed to search for planets around M dwarf stars. HPF is a near infrared
R 50,000 cross-dispersed radial velocity spectrograph using a HAWAII-2 RG (H2RG) NIR array, is cooled to
200K, is fiber-fed, and operates in the Y and J bands. This instrument is funded and is in the design phase,
and will be commissioned on the 10m Hobby-Eberly Telescope in 2015. Our simulations process high-resolution
stellar spectra through models of the instrument, detector, and a simple extraction pipeline. Our objective is to
create a a fully functional simulation of the entire HPF system, which can be used to guide spectrograph design
and to aid in observation planning. We describe the fundamental design of these simulations and the tests we
have performed, which verify that the simulator code is stable with inclusion of simple detector effects, and is
ready for expansion to account for more complex factors such as order curvature.
FORCAST has completed 16 engineering and science flights as the “First Light” U. S. science instrument aboard SOFIA
and will be commissioned as a SOFIA facility instrument in 2013. FORCAST offers dual channel imaging (diffractionlimited
at wavelengths < 15 microns) using a 256 x 256 pixel Si:As blocked impurity band (BIB) detector at 5 - 28
microns and a 256 x 256 pixel Si:Sb BIB detector at 28 - 40 microns. FORCAST images a 3.4 arcmin × 3.2 arcmin fieldof-
view on SOFIA with a rectified plate scale of 0.768 arcsec/pixel. In addition to imaging capability, FORCAST offers
a facility mode for grism spectroscopy that will commence during SOFIA Cycle 1. The grism suite enables spectroscopy
over nearly the entire FORCAST wavelength range at low resolution (~140 - 300). Optional cross-dispersers boost the
spectroscopic resolution to ~1200 at 5 - 8 microns and ~800 at 9.8 – 13.7 microns. Here we describe the FORCAST
instrument including observing modes for SOFIA Cycle 1. We also summarize in-flight results, including detector and
optical performance, sensitivity performance, and calibration.
SpeX is a cross-dispersed medium-resolution 0.8-5.5 micron spectrograph in operation at the NASA Infrared Telescope Facility
(IRTF) on Mauna Kea, Hawaii. The instrument uses prism cross-dispersers and gratings to provide resolving powers of up to
R~2000 simultaneously across 0.8-2.4 micron or ~2-5.4 micron. An autonomous infrared slit-viewer is used for object acquisition,
guiding, and scientific imaging. The spectrograph employs a 1024x1024 Aladdin 3 InSb array and the imager a 512x512 Aladdin 2 InSb array. Since it was commissioned in June 2000, SpeX has been used for about 45% of all telescope time. We give an overview of the design, followed by details of the use and performance of the Aladdin arrays,
observing techniques, maintenance issues and lessons learned.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.