Understanding human facial expressions is one of the key steps to achieving human-computer interaction. However, the facial expression is a combination of an expressive component called facial behavior and a neutral component of a person. The most commonly used taxonomy to describe facial behaviors is the Facial Action Coding System (FACS). FACS segments the visible effects of facial muscle activation into 30+ action units (AUs). So, we introduce a method to recognize AUs by extracting information of the expressive component through a de-expression learning procedure, called De-expression Residue Learning (DeRL). Firstly, we train a Generative Adversarial Network named cGAN to filter out the expressive information and generate the corresponding neutral face image. Then, we use the intermediate layers, which contains the action unit information, to recognition AUs. Our work alleviates problems of AUs recognition based on the pixel level difference, which is unreliable due to the variation between images i.e., rotation, translation and lighting condition changes, or the feature level difference, which is also unstable as the expression information may vary according to the identity information. As for experiments, we use the data augmentation method to avoid overfitting and trained deep network to recognition AUs on CK+ datasets. The results reveal that our work achieves more competitive performance than several other popular approaches.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.