An ultra-low emission Cl2 monitoring optical system based on differential optical absorption spectroscopy has been set up. We have found through comparison experiments that UV reflection enhanced aluminum is damaged and the dielectric film mirror is intact under high concentration of Cl2. Then verify the performance characteristics of ultralow Cl2 emission online monitoring device. The maximum absorbance of 50ppm Cl2 exceeds 0.1, while the 30ppm Cl2 reaches 0.063, so the measurement range can be 0-95 mg/m3, which meets the maximum allowable emission concentration of Cl2 required by the new regulations for detection of 65mg/m3.
As a Class 2B carcinogen, C8H8 has great hidden danger to human health. Domestic research on the detection of styrene in the atmosphere is relatively lacking. Therefore, this article determined proper retrieval range of wavelength and a method to eliminate interference based on the absorption feature in the UV region. An open optical path detection system was set up based on the principle of ultraviolet differential absorption spectroscopy. The detection limit of C8H8 is 9.0μg/m3 when the optical path reaches 100m. The outdoor field measurement of C8H8 was carried out in Binjiang District of Hangzhou, indicating the daily average variation of styrene gas. The results showed that the maximum concentration of C8H8 is 60.6μg/m3, the minimum concentration is 38.2μg/m3 and the average concentration is 53.5μg/m3.
In this paper, based on the analysis of the shortcomings of three-point comparison odor bag method, gas chromatography method and gas sensor, a malodorous gas monitoring device based on differential optical absorption spectroscopy (DOAS) is designed. This paper focuses on testing six gases, including carbon disulfide, styrene, dimethyl disulfide and so on. The total length of the optical path is 60cm. When the standard deviation is twice, the detection limit of these gases is around 0.10ppm. The results of mixed malodorous by measured show that the interference between components is very small, and the relative error of each component is less than 3% of the full scale by least square method. The odor gas emission monitoring device based on DOAS technology designed in this paper has the advantages of simple device and high measurement accuracy, which can meet the application requirements of field measurement.
In order to monitor the motor vehicle exhaust effectively, a motor vehicle exhaust telemetry device is set up based on differential optical absorption spectroscopy (DOAS) in this paper. The absorption spectrum of NO and 1,3-butadiene are analyzed quickly, meanwhile, qualitative and quantitative analysis are made simultaneously by the Least Square Method. Moreover, the correlation coefficient of absorbance and concentration reaching more than 0.999, which is obtained by non-linear analysis through polynomial fitting method. Additionally, the minimum detection limits of NO and 1,3-butadiene are 3ppm and 0.5ppm respectively. In order to verify the performance of the system, a set of tests were performed for a long time. So the experimental results show that the relative error of NO is not more than 2%, and the relative error of 1,3-butadiene is less than 2%. In addition, the calculation results of the experiment demonstrate that the repeatability error of NO is better than 1%, and the repeatability errors of 1,3-butadiene is lower than 2%. All the results meet the requirement of the application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.