The first-order derivative transformation was applied on a PROBA CHRIS hyperspectral remote sensing image of the Yellow River Estuary coastal wetland. Five classic supervised classification methods were employed on the images before and after the derivative transformation, and then those classification results were compared through manual interpretation and quantified analysis. The aim of this research is to evaluate the effects on the classification ability of supervised classification methods made by the derivative transformation. Experimental results show that, the derivative transformation is capable of improving the classification ability of certain supervised classification algorisms in coastal wetlands classification using hyperspectral images. Especially, for the Maximum Likelihood and Support Vector Machine methods, with the best classification accuracy, derivative transformation could effectively help distinguish vegetation and clear water wetlands.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.