Dynamic OCT angiography (OCTA) is an attractive approach for monitoring stimulus-evoked hemodynamics; however, a large dataset poses a great challenge to data processing. This study proposed a GPU-based real-time data processing pipeline for dynamic inverse SNR-decorrelation OCTA (ID-OCTA) with line-process rate of 133 kHz. Real-time processing enabled automatic optimization of angiogram quality, which improved the vessel SNR, contrast-to-noise ratio, and connectivity by 14.37, 14.08, and 9.76%, respectively. Furthermore, dynamic angiographic imaging of stimulus-evoked hemodynamics was achieved within a single trail in the mouse retina. Therefore, GPU ID-OCTA enables real-time and high-quality angiographic imaging and is particularly suitable for hemodynamic studies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.