Data preprocessing of the Polarized Scanning Atmospheric Corrector (PSAC) onboard HuanjingJianzai-2(HJ-2)A/B satellites is a key step for further applications. Based on the principles and characteristics of PSAC sensor, this paper elaborates on the methods and procedures of its data preprocessing including parameters quality supervision, data precorrection, calibration implementation and geolocation, etc. The results show that the data preprocessing from the original data to the L1 product is accurate and effective after preliminary analysis and evaluation, which can be used for subsequent atmospheric parameters retrieval and atmospheric correction applications.
The Off-axis Three-mirror Simultaneous Imaging Polarimeter (OTSIP) is a kind of polarimetric remote sensor with high spatial resolution. In OTSIP, simultaneous measurements were performed by means of prism dividing amplitude. Due to various equipped polarizers and complex polarimetric characteristics of OTSIP, its instrument matrix will deviate from the ideal value. In order to ensure the polarimetric accuracy of OTSIP, the development of an efficient polarimetric calibration is indispensable. In this paper, a calibration method using a standard linear polarization light source and circular polarization light source was proposed. The first three columns of the instrument matrix were firstly calibrated by a linear polarimetric calibration source to obtain the calibration coefficients via the least-squares fitting algorithm, and then the fourth column of the instrument matrix was calibrated by a circular polarimetric calibration source. Moreover, the nonideality of circular polarization state light was significantly improved by averaging measured results at 0 and 90° azimuths. As for the full field of view polarization calibration, a linear fitting method to each element of the instrument matrixes at multiple field of view angles was used. The resulting polarimetric measurement accuracy showed that the linear and circular polarization measurement accuracy was better than 1% (DOP<=0.3), validating the effectiveness and feasibility of this polarimetric calibration method. This method greatly improves the calibration efficiency of the OTSIP, making it possible to calibrate the polarimeter in flight.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.