The spectral finite element method (SFEM) is developed to predict guided ultrasonic waves in the surface-bonded piezoelectric wafer and beam structure. The Timoshenko beam theory, the Euler-Bernoulli beam theory and linear piezoelectricity are used to model the base beam and electric-mechanical behavior of the piezoelectric wafer respectively. Using Hamilton’s principle, the governing equations are obtained in the time domain, and then the SFEM are formulated from coupled differential equations of motion transformed into the frequency domain via the discrete Fourier transform. The SFEM is used to analyze the dispersion characteristics, mode conversion of guided waves and the interaction of waves and notch. The high accuracy of the present SFEM is verified by comparing with the finite element method results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.