In this paper, we present a unique two-stage classifier system for
identifying normal mammograms. We present methods that extract
features from breast regions characterizing normal and cancerous
tissue. A subset of the features is used to construct a classifier. This classifier is then used to classify each mammogram as normal or abnormal. We designed a unique two-stage cascading classifier system.
A binary decision tree classifier was used in the first stage. Cost constraints can be set to correctly classify cancerous regions. The regions classified as abnormal in the first-stage were used as input to the second-stage classifier, a linear classifier. We will show that the overall performance of our two-stage cascading classifier is better than a single classifier. Results of full-field normal mammogram analysis using this cascading classifier are comparable to a human reader.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.