An analytical framework is presented for evaluating the equivalence of parenchymal texture features across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control setting. A panel of texture features, including gray-level histogram, co-occurrence, run length, and structural descriptors, are extracted. To identify features that are robust across imaging systems, a series of equivalence tests are performed on the feature distributions, in which the extent of their intersystem variation is compared to their intrasystem variation via the Hodges–Lehmann test statistic. Overall, histogram and structural features tend to be most robust across all systems, and certain features, such as edge enhancement, tend to be more robust to intergenerational differences between detectors of a single vendor than to intervendor differences. Texture features extracted from larger regions of interest (i.e., >63 pixels2) and with a larger offset length (i.e., >7 pixels), when applicable, also appear to be more robust across imaging systems. This framework and observations from our experiments may benefit applications utilizing mammographic texture analysis on images acquired in multivendor settings, such as in multicenter studies of computer-aided detection and breast cancer risk assessment.
Software breast phantoms have been developed for pre-clinical validation of breast imaging systems. Realism is of great
importance for the acceptance and the range of applications of breast phantoms. In this paper we have assessed the
phantom realism based upon the analysis of mammographic texture properties. Texture analysis is of interest since it
reflects the spatial tissue distribution, which is known to correlate with breast cancer risk. We compared texture
properties of synthetic mammograms generated using software breast phantoms with clinical data. A total of 133
phantom images were synthesized using software phantoms developed at the University of Pennsylvania. The phantoms
were designed using two different anatomy simulation methods: an octree-based recursive partitioning method and a
region growing method. The synthetic images were generated assuming a clinically used acquisition geometry and
mono-energetic x-ray beam with no scatter. The clinical data included 60 anonymized mammograms selected
retrospectively from screening cases at the University of Pennsylvania. The same postprocessing was applied to clinical
and phantom images. The texture analysis was performed using fully automated software which extracts a battery of
features from analyzed images. The histograms of texture properties extracted from phantom images were compared
with those from clinical mammograms, separately for the two anatomy simulation methods. The histogram agreement
was quantified using symmetrized Kulback-Leibler divergence. We observed good agreement for most of the analyzed
25 features. In more than a half of the features, the octree-based simulation method yielded better agreement with
clinical data as compared with the region growing method.
Estimating a woman’s risk of breast cancer is becoming increasingly important in clinical practice. Mammographic density, estimated as the percent of dense (PD) tissue area within the breast, has been shown to be a strong risk factor. Studies also support a relationship between mammographic texture and breast cancer risk. We have developed a fullyautomated software pipeline for computerized analysis of digital mammography parenchymal patterns by quantitatively measuring both breast density and texture properties. Our pipeline combines advanced computer algorithms of pattern recognition, computer vision, and machine learning and offers a standardized tool for breast cancer risk assessment studies. Different from many existing methods performing parenchymal texture analysis within specific breast subregions, our pipeline extracts texture descriptors for points on a spatial regular lattice and from a surrounding window of each lattice point, to characterize the local mammographic appearance throughout the whole breast. To demonstrate the utility of our pipeline, and optimize its parameters, we perform a case-control study by retrospectively analyzing a total of 472 digital mammography studies. Specifically, we investigate the window size, which is a lattice related parameter, and compare the performance of texture features to that of breast PD in classifying case-control status. Our results suggest that different window sizes may be optimal for raw (12.7mm2) versus vendor post-processed images (6.3mm2). We also show that the combination of PD and texture features outperforms PD alone. The improvement is significant (p=0.03) when raw images and window size of 12.7mm2 are used, having an ROC AUC of 0.66. The combination of PD and our texture features computed from post-processed images with a window size of 6.3 mm2 achieves an ROC AUC of 0.75.
KEYWORDS: Breast, Imaging systems, Breast cancer, Sensors, Digital mammography, Feature extraction, Image processing, Modulation transfer functions, Control systems, Spatial resolution
Growing evidence suggests a relationship between mammographic texture and breast cancer risk. For studies performing texture analysis on digital mammography (DM) images from various DM systems, it is important to evaluate if different systems could introduce inherent differences in the images analyzed and how to construct a methodological framework to identify and standardize such effects, if these differences exist. In this study, we compared two DM systems, the GE Senographe 2000D and DS using a validated physical breast phantom (Rachel, Gammex). The GE 2000D and DS systems use the same detector, but a different automated exposure control (AEC) system, resulting in differences in dose performance. On each system, images of the phantom are acquired five times in the Cranio-Caudal (CC) view with the same clinically optimized phototimer setting. Three classes of texture features, namely grey-level histogram, cooccurrence, and run-length texture features (a total of 26 features), are generated within the breast region from the raw DM images and compared between the two imaging systems. To alleviate system effects, a range of standardization steps are applied to the feature extraction process: z-score normalization is performed as the initial step to standardize image intensities, and the parameters in generating co-occurrence features are varied to decrease system differences introduced by detector blurring effects. To identify texture features robust to detectors (i.e. the ones minimally affected only by electronic noise), the distribution of each texture feature is compared between the two systems using the Kolmogorov-Smirnov (K-S) test at 0.05 significance, where features with p>0.05 are deemed robust to inherent system differences. Our approach could provide a basis for texture feature standardization across different DM imaging systems and provide a systematic methodology for selecting generalizable texture descriptors in breast cancer risk assessment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.