Displacement laser interferometers and grating interferometers are two main apparatus for the micron-nanometer displacement measurement over a long range. However, the laser interferometers, whose measuring scale is based on the wavelength, are very sensitive to the environment. On the contrast, the grating interferometers change the measuring scale from wavelength to grating period, which is much stable for the measurement results. But the resolution of grating interferometer is usually lower than that of laser interferometer. Therefore, further investigation is needed to improve the performance of grating interferometer. As we known, the optical subdivision is a main factor that affects the measurement resolution. In this paper, a grating interferometer with high optical subdivision is presented based on the Littrow configuration. We mainly use right angle prisms accompanied with plane mirrors to make the measuring lights diffracted by the grating scale for many times. An optical subdivision factor of 1/24 can be obtained by this technique. A main difficulty of this technique is that the grating scale should be with high diffraction efficiency. Fortunately, the measuring light is incident on the grating scale at the Littrow angle, the grating scale can be designed with very high efficiency easily in this condition. Compared with traditional grating interferometers, this kind of grating interferometer can greatly increase the measuring resolution and accuracy, which could be widely used in nanometer-scale fabrications and measurements.
A grating interferometer is presented based on the quasi-Littrow configuration. We mainly use a plane mirror to make the measuring light reflect and diffract between the mirror and grating scale for several times. According to the grating Doppler shift, the more times that measuring light diffracted, the higher optical subdivision can be obtained. As an example, a grating interferometer with an optical subdivision factor of 1/12 is designed. This work provides a technique to increase the resolution of the grating interferometer, which should be interesting for high precision measurement.
Large-sized gratings are essential optical elements in laser fusion and space astronomy facilities. Scanning beam interference lithography is an effective method to fabricate large-sized gratings. To minimize the nonlinear phase written into the photo-resist, the image grating must be measured to adjust the left and right beams to interfere at their waists. In this paper, we propose a new method to conduct wavefront metrology based on phase-stepping interferometry. Firstly, a transmission grating is used to combine the two beams to form an interferogram which is recorded by a charge coupled device(CCD). Phase steps are introduced by moving the grating with a linear stage monitored by a laser interferometer. A series of interferograms are recorded as the displacement is measured by the laser interferometer. Secondly, to eliminate the tilt and piston error during the phase stepping, the iterative least square phase shift method is implemented to obtain the wrapped phase. Thirdly, we use the discrete cosine transform least square method to unwrap the phase map. Experiment results indicate that the measured wavefront has a nonlinear phase around 0.05 λ@404.7nm. Finally, as the image grating is acquired, we simulate the print-error written into the photo-resist.
To provide accurate three-dimensional (3-D) data for production and processing, 3-D surface measurement is always an essential step to the production of glass. Profilometry and Interferometry are traditional measurement apparatus, referring to different procedures. Although more precise, Interferometry cannot be used in milling procedure, owing to the scattering property of rough glass. While as a widely used Profilometry, Coordinate Measuring Machine (CMM) employs a probe for measuring by contacting surface directly. It should be noted that such a time-consuming machine is not practical for measuring large-sized rough glass, so a novel designed method called temporal speckle is introduced to a non-contact binocular 3-D measurement system for measuring. Specifically, N band-limited binary patterns are sequentially projected to rough glass from a pattern generation device, such patterns have been proved to depress scattering properties of rough surface. The whole binocular 3-D measurement system can finish a single measurement in one second with a standard deviation less than 73.44um. This system performs fast and accurate 3-D surface measurement for large-sized rough glass block.
To produce large scale gratings by Scanning Beam Interference Lithography (SBIL), a light spot containing grating pattern is generated by two beams interfering, and a scanning stage is used to drive the substrate moving under the light spot. In order to locate the stage at the proper exposure positions, the period of the Interference pattern must be measured accurately. We developed a set of process to obtain the period value of two interfering beams at picometer level. The process includes data acquisition and data analysis. The data is received from a photodiode and a laser interferometer with sub-nanometer resolution. Data analysis differs from conventional analyzing methods like counting wave peaks or using Fourier transform to get the signal period, after a preprocess of filtering and envelope removing, the mean square error is calculated between the received signal and ideal sinusoid waves to find the best-fit frequency, thus an accuracy period value is acquired, this method has a low sensitivity to amplitude noise and a high resolution of frequency. With 405nm laser beams interfering, a pattern period value around 562nm is acquired by employing this process, fitting diagram of the result shows the accuracy of the period value reaches picometer level, which is much higher than the results of conventional methods.
A highly efficient reflective 1×3 splitting grating with triangular structure operating in 1.064μm wavelength under normal incidence for TE polarization is designed. The schematic of the grating has four layers. The first layer with SiO2 is triangular structure. Rigorous coupled wave analysis (RCWA) and Simulated Annealing (SA) algorithm are adopted to design and analyze the properties. The theoretical efficiency is nearly about 99%. The bigger error tolerance is also analyzed by rigorous coupled wave analysis. These reflective gratings as splitters should be useful optical elements in the field of high-power laser as well as other reflective applications.
KEYWORDS: 3D metrology, Cameras, Diffraction gratings, Diffraction, 3D scanning, 3D modeling, Clouds, Fiber optic illuminators, 3D acquisition, Semiconductor lasers
In this paper, we develop a binocular three-dimensional measurement system using a Dammann grating. A laser diode and a Dammann grating are employed to generate a regular and square laser spot array. Dammann array illuminator is placed between two cameras and narrowband-pass filters are embedded in the project lens to eliminate the interference of background light. During the measurement, a series of laser spot arrays are projected toward the target object and captured by two cameras simultaneously. Similar to stereo vision of human eyes, stereo matching will be performed to search the homologous spot which is a pair of image points resulting from the same object point. At first, the sub-pixel coordinates of the laser spots are extracted from the stereo images. Then stereo matching is easily performed based on a fact that laser spots with the same diffraction order are homologous ones. Because the system has been calibrated before measurement, single frame three-dimensional point cloud can be obtained using the disparity of homologous points by triangulation methods. Finally, three-dimensional point clouds belong to different frame which represent different view of the object will be registered to build up an integral three-dimensional object using ICP algorithm. On one hand, this setup is small enough to meet the portable outdoor applications. On the other hand, measurement accuracy of this system is better than 0.3 mm which can meet the measurement accuracy requirements in most situations.
Optical encoders and laser interferometers are two primary solutions in nanometer metrology. As the precision of encoders depends on the uniformity of grating pitches, it is essential to evaluate pitches accurately. We use a CCD image sensor to acquire grating image for evaluating the pitches with high precision. Digital image correlation technique is applied to filter out the noises. We propose three methods for determining the pitches of grating with peak positions of correlation coefficients. Numerical simulation indicated the average of pitch deviations from the true pitch and the pitch variations are less than 0.02 pixel and 0.1 pixel for these three methods when the ideal grating image is added with salt and pepper noise, speckle noise, and Gaussian noise. Experimental results demonstrated that our method can measure the pitch of the grating accurately, for example, our home-made grating with 20μm period has 475nm peak-to-valley uniformity with 40nm standard deviation during 35mm range. Another measurement illustrated that our home-made grating has 40nm peak-to-valley uniformity with 10nm standard deviation. This work verified that our lab can fabricate high-accuracy gratings which should be interesting for practical application in optical encoders.
Beam splitters are widely used in various optical modern systems for separating optical wave into different directions. We have proposed a novel slanted grating for beam splitter at the central wavelength of 1550nm, which can be used in the optical communication. With the simulated annealing algorithm, beam splitter slanted grating can be optimized by using the rigorous coupled wave analysis (RCWA). The diffraction process can be analyzed by the simplified modal method. The simplified modal method, without complicated calculation, reduces the difficult diffraction process into a vividly and physical modal. We have derived an analytical expression which can provide an insightful physical description of the simplified modal method for the slanted grating. Compared with the rectangular grating, the slanted grating has the asymmetric physical structure. Therefore, the odd grating mode can also be excited in the slanted grating under normal incidence. The odd grating mode, which only exists in the asymmetric structure, plays the role of breaking the symmetric field distribution in the output plane. The physical analytical expression of mode conversion and coupling for the slanted grating can be obtained to interpretation the asymmetric field distribution. Numerical results obtained by the rigorous coupled wave analysis verified the validity of the simplified modal method. We expect the modal method for the slanted grating set forth in this work should be helpful for the tremendous potential application of the slanted grating.
A new method of single-track absolute position encoding based on spatial frequency of stripes is proposed. Instead of using pseudorandom-sequence arranged stripes as in conventional situations, this kind of encoding method stores the location information in the frequency space of the stripes, which means the spatial frequency of stripes varies with position and indicates position. This encoding method has a strong fault-tolerant capability with single-stripe detecting errors. The method can be applied to absolute linear encoders, absolute photoelectric angle encoders or two-dimensional absolute linear encoders. The measuring apparatus includes a CCD image sensor and a microscope system, and the method of decoding this frequency code is based on FFT algorithm. This method should be highly interesting for practical applications as an absolute position encoding method.
Femtosecond laser technology is one of the frontiers in the fields of nonlinear optics, advanced manufacturing etc. The method of femtosecond pulse compression is an important research content. To compress the femtosecond pulse, we need to use negative dispersive elements to compensate the positive dispersion of Ti: sapphire crystal and other optical elements. For this purpose, we propose a miniature double-line-density grating pair in which the line density of the second grating is twice of the first one, the output pulse propagates along the way back. The density of the gratings is high, which will have a high diffraction efficiency and can compensate a high GVD ( group velocity dispersion ) in a small distance. The first grating is transmitted and the second one is reflective, the device will not occlude the beam propagation. With the pair of the gratings, the input positive chirped 89fs pulse is neatly compressed into the Fourier transform limited 44fs pulse with no spectral spatial walkoff and dispersion. It can be used for compression in laser cavity or out of the cavity. The gratings are easy to adjust and the structure is simple and compact, which has widespread interest in practical applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.