KEYWORDS: Blood, In vitro testing, Body temperature, Scanning electron microscopy, Blood vessels, Manufacturing, Design for manufacturability, Shape memory alloys, Temperature metrology, Data modeling
A smart guidewire using nitinol materials was designed, manufactured and evaluated the device functionality, such as bending performance, trackability, thermal effects, and thrombogenic response. Two types of nitinol material were partially used to enhance the guidewire trackability. A proposed smart guidewire system uses either one- or two-way shape-memory alloy nitinol (1W-SMA, 2W-SMA) wires (0.015, 381µm nitinol wire). Bending stiffness was measured using in vitro test system, which contains the NI USB-9162 data logger and LabView Signal Express 2010. Temperature distribution and displacement were evaluated via recording a 60Hz movie using a SC325 camera. Hemocompatibility was evaluated by scanning electron microscopy after one heating cycle of nitinol under the Na-citrate porcine whole blood circulation. A smart guidewire showed 30 degrees bending after applying or disconnecting electrical current. While the temperature of the nitinol wires increased more than 70 °C, the surrounding temperature with the commercially available catheter coverings showed below human body temperature showing 30 ̴ 33 °C. There was no significant platelet attachment or blood coagulation when the guidewire operates. Novel smart guidewires have been developed using shape memory alloy nitinol, which may represent a novel alternative to typical commercially available guidewires for interventional procedures.
A proof of concept of low-profile flow sensor has been designed, fabricated, and subsequently tested to demonstrate its feasibility for monitoring hemodynamic changes in cerebral aneurysm. The prototype sensor contains three layers, i.e., a thin polyurethane layer was sandwiched between two sputter-deposited thin film nitinol layers (6μm thick). A novel superhydrophilic surface treatment was used to create hemocompatible surface of thin nitinol electrode layers. A finite element model was conducted using ANSYS Workbench 15.0 Static Structural to optimize the dimensions of flow sensor. A computational fluid dynamics calculations were performed using ANSYS Workbench Fluent to assess the flow velocity patterns within the aneurysm sac. We built a test platform with a z-axis translation stage and an S-beam load cell to compare the capacitance changes of the sensors with different parameters during deformation. Both LCR meter and oscilloscope were used to measure the capacitance and the resonant frequency shifts, respectively. The experimental compression tests demonstrated the linear relationship between the capacitance and applied compression force and decreasing the length, width and increasing the thickness improved the sensor sensitivity. The experimentally measured resonant frequency dropped from 12.7MHz to 12.48MHz, indicating a 0.22MHz shift with 200g ( 2N) compression force while the theoretical resonant frequency shifted 0.35MHz with 50g ( 0.5N). Our recent results demonstrated a feasibility of the low-profile flow sensor for monitoring haemodynamics in cerebral aneurysm region, as well as the efficacy of the use of the surface treated thin film nitinol for the low-profile sensor materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.