The interfacial asymmetry and compositional disorder caused by atomic segregation and exchange significantly affect the electrical properties of the InAs/InAsSb superlattice, leading to deviations from original designs. The study presents a quantitative analysis of the compositional asymmetry of the superlattice and its effects using a segregation model and 8-band k.p model. The composition disorder at each interface, primarily induced by Sb segregation, is examined through the reconstruction of the actual atomic sequence structure based on scanning tunneling microscopy results. Three different atomistic structures of the superlattice are modeled using the k.p method, including the ideal MBE-growth structure, a rebuilt structure with Sb segregation only at the InAs-on-InAsSb interface, and a rebuilt structure with Sb segregation at both interfaces. The results of the modeling highlight the significant influence of Sb segregation on the electronic properties of InAs/InAsSb superlattices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.