Understanding the electromagnetic properties of the 3D through silicon via (TSV) with high aspect ratio is important for the 3D IC stacking and packaging. The electromagnetic simulations were used to explore the TSV with different model parameters, such as top critical dimension, bottom critical dimension, hole depth, sidewall slope, sidewall roughness, curvature of the base, and light wavelength. A model is proposed to parameterize TSV structure features. The simulation results corresponding to these model parameters are discussed.
In the study, we develop a multiple constrained signal subspace projection (SSP) approach to target detection. Instead of using single constraint on target detection, we design an optimal filter with multiple constraints on desired targets by using SSP. The proposed SSP approach fully exploits the orthogonal property of two orthogonal subspaces: one denoted signal subspace containing desired and undesired/background targets; the other denoted noise subspace, which is orthogonal to signal subspace. By projecting the weights of the detection filter on the signal subspace, the proposed SSP can reduces some estimation errors in target signatures and alleviate the performance degradation caused by uncertainty of target signature. The SSP approach can detect desired targets, suppress undesired targets and minimize the interference effects. In experiments, we provide three methods in selecting multiple constraints of the desired target: Kmeans, principal eigenvectors and endmenber extracting techniques. Simulation results show that the proposed SSP with multiple constraints selected by K-means has better detection performance. Furthermore, the proposed SSP with multiple constraints is a robust detection approach which could overcome the uncertainty of desired target signature in real image data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.