Liquid crystalline compounds with a siloxane component in the tail were found to be effective in the formation of holographic gratings of polymer dispersed liquid crystal systems over a wide concentration range from 3wt% to 30wt%. The structure of the siloxane chain had a big effect on the performance of the gratings. Fine gratings with a diffractive efficiency of 40wt% could be formed with a liquid crystalline compound containing 3wt% disiloxane.
Optimization of performance of holographic gratings was investigated by changing the chemical structures of photopolymerizable monomers, the LC content, and recording beam intensity, which strongly related to the control of kinetics of polymerization and phase separation of LCs. High diffraction efficiency was obtained using 3-acryloxypropyltrimethoxysilane (APTMS) and 2-[(3,4-epoxycyclohexyl)ethyl]trimethoxysilane (ECTMS) as siloxane-containing reactive diluent by inducing a fast and good phase separation originated from the incompatible and flexible properties of siloxane chain even at a very low LC concentration (10~25wt%), in contrast to the case using diluent without siloxane component, like N-vinylpyrrolidinone. The phase-separated morphologies of gratings, such as spacing and surface topology, were observed by atomic force microscopy (AFM). Very regular and smooth morphologies were observed for the formed holographic gratings with APTMS and various amounts of LC.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.