KEYWORDS: Upconversion, Crystals, Black bodies, Thermal imaging cameras, Temperature metrology, Matrices, Thermography, Quantum reading, Quantum noise, Signal to noise ratio
We present a scheme for estimating the noise-equivalent temperature difference (NETD) of frequency upconversion detectors (UCDs) that detect mid-infrared (MIR) light. In particular, we investigate the frequency upconversion of a periodically poled crystal based on lithium niobate, where an MIR conversion bandwidth of 220 nm can be achieved in a single-poled period by a special design. Experimentally, for an MIR radiating target at a temperature of 95°C, the NETD of the device was estimated to be 56 mK with an exposure time of 1 s. Meanwhile, a direct measurement of the NETD was performed utilizing conventional methods, which resulted in 48 mK. We also compared the NETD of our UCD with commercially available direct MIR detectors. We show that the limiting factor for further NETD reduction of our device is not primarily from the upconversion process and camera noise but from the limitations of the heat source and laser performance. Our detectors have good temperature measurement performance and can be used for a variety of applications involving temperature object identification and material structure detection.
In quantum communications, vortex photons can encode higher-dimensional quantum states and build highdimensional communication networks (HDCNs). The interfaces that connect different wavelengths are significant in HDCNs. We construct a coherent orbital angular momentum (OAM) frequency bridge via difference frequency conversion in a nonlinear bulk crystal. Using a single resonant cavity, maximum quantum conversion efficiencies from visible to infrared are 36%, 15%, and 7.8% for topological charges of 0,1, and 2, respectively. The average fidelity obtained using quantum state tomography for the down-converted infrared OAM-state of topological charge 1 is 96.51%. We also prove that the OAM is conserved in this process by measuring visible and infrared interference patterns. This coherent OAM frequency-down conversion bridge represents a basis for an interface between two high-dimensional quantum systems operating with different spectra.
In this work, by combining the wavelength- and time-division multiplexing technologies, we demonstrate a multiplexing time-bin entangled photon pair source based on a silicon nanowire waveguide and distribute entangled photons into 3(time) × 14(wavelength) channels independently. The indistinguishability of photon pairs in each time channel is confirmed by a fourfold Hong-Ou-Mandal quantum interference.
The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such a quantum network can be realized using only fiber elements, thus deriving the advantages of low transmission loss, low cost, scalability, and integrability through mature fiber communication techniques such as dense wavelength division multiplexing. Hence high-quality entangled-photon sources based on fibers are in high demand. Here we report multiplexed polarization- and time-bin-entangled photon-pair sources based on the dispersion-shifted fiber operating at room temperature. The associated high quality of entanglement is characterized using interference, Bell’s inequality, and quantum state tomography. The simultaneous presence of both types of entanglement in multi-channel pairs of a 100-GHz dense wavelength division multiplexing device indicates a great capacity in distributing entangled photons over multiple users. Our design provides a versatile platform and takes a big step toward constructing an all-fiber quantum network.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.