The control over surface wettability is of concern for a number of important applications including chromatography,
microfluidics, biomaterials, low-fouling coatings and sensing devices. Here, we report the ability to tailor wettability
across a surface using lateral porous silicon (pSi) gradients. Lateral gradients made by anodisation of silicon using an
asymmetric electrode configuration showed a lateral distribution of pore sizes, which decreased with increasing distance
from the electrode. Pore sizes were characterised using scanning electron microscopy (SEM) and atomic force
microscopy (AFM). Pore diameters ranged from micrometres down to less than 10 nanometres. Chemical surface
modification of the pSi gradients was employed in order to produce gradients with different wetting or non-wetting
properties. Surface modifications were achieved via silanisation of oxidised pSi surfaces introducing functionalities
including polyethylene glycol, terminal amine and fluorinated hydrocarbon chains. Surface modifications were
characterised using infrared spectroscopy. Sessile drop water contact angle measurements were used to probe the
wettability in regions of different pore size across the gradient. For the fluorinated gradients, a comparison of
equilibrium and dynamic contact angle measurement was undertaken. The fluorinated surface chemistry produced
gradients with wettabilities ranging from hydrophobic to near super-hydrophobic whereas pSi gradients functionalised
with polyethylene glycol showed graded hydrophilicity. In all cases investigated here, changes in pore size across the
gradient had a significant effect on wettability.
The ability to evaluate and control the cellular response to substrate materials is the key to a wide range of biomedical
applications ranging from diagnostic tools to regenerative medicine. Gradient surfaces provide a simple and fast method
for investigating optimal surface conditions for cellular responses such as attachment and growth. By using two
orthogonal gradients on the same substrate, a large space of possible combinations can be screened simultaneously. Here,
we have investigated the combination of a porous silicon (pSi) based topography gradient with a plasma polymer based
thickness gradient. pSi was laterally anodised on a 1.5 × 2.5cm2 silicon surface using hydrofluoric acid to form a pore
size gradient along a single direction. The resulting pSi was characterised by SEM and AFM and pore sizes ranging from
macro to mesoporous were found along the surface. Plasma polymerisation was used to form a thickness gradient
orthogonal to the porous silicon gradient. Here, allylamine was chosen as the monomer and a mask placed over the
substrate was used to achieve the thickness gradient. The analysis of this chemistry based gradient was carried out using
profilometry and XPS. It is expected that orthogonal gradient substrates will be used increasingly for the in vitro
screening of materials used in biomedical applications.
Current methods to produce short DNA strands (oligonucleotides) involve the stepwise coupling of phosphoramidites onto a solid support, typically controlled pore glass. The full-length oligonucleotide is then cleaved from the solid support using a suitable aqueous or organic base and the oligonucleotide is subsequently separated from the spent support. This final step, albeit seemingly easy, invariably leads to increased production costs due to increased synthesis time and reduced yields. This paper describes the preparation of a dissolvable support for DNA synthesis based on porous silicon (pSi). Initially it was thought that the pSi support would undergo dissolution by hydrolysis upon cleavage of the freshly synthesised oligonucleotide strands with ammonium hydroxide. The ability to dissolve the solid support after completion of the synthesis cycle would eliminate the separation step required in current DNA synthesis protocols, leading to simpler and faster synthesis as well as increased yields, however it was found that the functionalisation of the pSi imparted a stability that impeded the dissolution. This strategy may also find applications for drug delivery where the controlled release of carrier-immobilised short antisense DNA is desired. The approach taken involves the fabrication of porous silicon (pSi) microparticles and films. Subsequently, the pSi is oxidised and functionalised with a dimethoxytrityl protected propanediol to facilitate the stepwise solid phase synthesis of DNA oligonucleotides. The functionalisation of the pSi is monitored by diffuse reflectance infrared spectroscopy and the successful trityl labelling of the pSi is detected by UV-Vis spectroscopy after release of the dimethoxytrityl cation in the presence of trichloroacetic acid (TCA). Oligonucleotide yields can be quantified by UV-Vis spectroscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.