To improve EUV resist sensitivity, studies have sought to enhance EUV light absorption by adding metals characterized by high EUV light absorption to the resist polymer. This approach is intended to increase secondary electron emission, thereby enhancing PAG reactivity and improving acid generation efficiency. As reported in our previous report, to determine whether adding metals characterized by high EUV light absorption actually enhances sensitivity, we performed transmittance measurements and sensitivity evaluations of resist samples doped with ZrO2 or TeO2 nanoparticles, which have low and high EUV light absorption, respectively, in molar quantities of 0-2 relative to PAG. The samples were subjected to EUV exposure at the NewSUBARU synchrotron radiation facility. The results of transmittance measurements and sensitivity evaluations showed that, while the ZrO2-doped resist showed no changes in absorption or sensitivity, the TeO2-doped resist showed enhancement in both properties. Based on these results, we confirmed that adding metals characterized by high EUV light absorption to the EUV resist enhances its EUV light absorption and increases secondary electron emission, thereby enhancing PAG reactivity and improving acid generation efficiency. In the efforts discussed in the present report, we examined whether adding metals directly to PAG could further enhance sensitivity by increasing the EUV light absorption of PAG itself, thereby efficiently heightening the effect of the secondary electron emission on PAG.
To improve EUV resist sensitivity, studies have sought to enhance EUV light absorption by adding metals characterized by high EUV light absorption to the resist polymer. This approach is intended to increase secondary electron emission, thereby enhancing PAG reactivity and improving acid generation efficiency [1-3]. As reported in our previous report, to determine whether adding metals characterized by high EUV light absorption actually enhances sensitivity, we performed transmittance measurements and sensitivity evaluations of resist samples doped with ZrO2 or TeO2 nanoparticles, which have low and high EUV light absorption, respectively, in molar quantities of 0-2 relative to PAG. The samples were subjected to EUV exposure at the NewSUBARU synchrotron radiation facility. The results of transmittance measurements and sensitivity evaluations showed that, while the ZrO2-doped resist showed no changes in absorption or sensitivity, the TeO2-doped resist showed enhancement in both properties. Based on these results, we confirmed that adding metals characterized by high EUV light absorption to the EUV resist enhances its EUV light absorption and increases secondary electron emission, thereby enhancing PAG reactivity and improving acid generation efficiency [4-5]. In the efforts discussed in the present report, we examined whether adding metals directly to PAG could further enhance sensitivity by increasing the EUV light absorption of PAG itself, thereby efficiently heightening the effect of the secondary electron emission on PAG.
The uniformity of acid generator distribution and the length of acid diffusion are serious problems in the development of resist materials used for the 16nm node and below. Anion-bound polymers in which the anion part of onium salts is polymerized have attracted much attention for solving these problems. In this study, the reaction mechanism of an anion-bound polymer in cyclohexanone was clarified using pulse radiolysis. The design of an efficient electron and hole transfer system is essential to the enhancement of resist performance.
Directed self-assembly (DSA) of block copolymers (BCPs) is one of candidate for next generation patterning technique. Many good demonstrations of DSA have been reported using polystyrene-block-poly(methyl methacrylate) (PS-b- PMMA) these days. On the other hands, BCPs which show high chi parameter are being developed because the BCPs can be formed smaller features than PS-b-PMMA. Si-containing BCPs are one of them. Moreover Si-containing BCPs show higher etch selectivity than PS-b-PMMA because of higher etch resistance of Si-containing block. Unfortunately, while Si-containing BCPs can be aligned by solvent annealing, they but cannot be aligned perpendicular to the substrate by thermal annealing. Because Si-containing block which has low surface energy achieves maximum interaction with air interface by forming a top parallel wetting layer to the substrate. One solution to control of surface energy on top surface is the use of Top-Coat (TC). It has been already demonstrated that TC with Si-containing BCP could form perpendicular pattern. The challenges are TC coating onto BCP film and TC stripping after annealing. In order to solve these problems, polarity-changeable type TC has been developed. The effect of TC materials to generate finger print of BCP has been reported. However, this TC process should combine with DSA process to form aligned patterns. Graphoepitaxy is one of the DSA technique to align BCP pattern using guide pattern. In this technique, the characteristic of guide pattern side wall is very important to control BCP pattern alignment for the Graphoepitaxy process. Also, in order to establish the process, there are two key parameters for the materials. One is BCP and guide pattern should have enough resistance to TC solvent through TC coating process. The other is TC can be removed easily with basic aqueous solution before BCP patterning. In this report, a detail of examination for TC Graphoepitaxy process will be discussed.
Out of band (OoB) radiation has been regarded as one of the key issues on Extreme Ultra Violet
Lithography (EUVL). OoB light especially in the deep ultraviolet (DUV) region have a negative
impact on image contrast and resist profile, since general photo acid generator (PAG) used in chemically
amplified EUV resist are also sensitive for DUV. It is reported that a Spectral Purify Filter (SPF) would
eliminate OoB radiation. However it expense a large reduction in EUV power and hence throughput, so
it is reported that HVM EUV exposure tool would not employ SPF.
Therefore, both EUV sensitive and DUV insensitive are required property to overcome OoB radiation
issue by resist material itself. Consideration of PAG cation structure was proceeded to control
absorption for DUV. Based on the concept, OoB insensitivity was investigated both on blend resist
platform and Polymer Bound PAG (PBP) platform. OoB insensitive concept was confirmed with UV
spectrum and sensitivity for KrF and ArF. The OoB insensitive PAG cation worked well on PBP, while
dark loss are seen on blend resist platform due to lack of inhibition effect. Lithographic performance
would be exhibited using Alpha Demo Tool (ADT) and NXE3100. Outgassing property on witness
sample (WS) and Residual Gas Analysis (RGA ) will be also discussed.
In current optical lithography, resolution is required to reach for 45 nm half-pitch and a chemically amplified resist
(CAR) is used for a wide variety of applications. For ArF lithography beyond the 45 nm half-pitch, it is important to
control pattern quality. The molecular design of a photo acid generator (PAG) is very important in the study to
control not only acid strength but also acid diffusion length. Various novel PAGs that have different characteristics
were synthesized for resist performance improvement. Acid molecular size was determined by molecular orbital
(MO) calculation, and the acid diffusion coefficients (D) of these PAGs were evaluated by a bilayer method. As a
result, it was found that acid diffusion coefficient (D) could not be controlled simply by adjusting anion molecular size.
It may be presumed that the molecular interaction between acid generated by the exposure and polymer matrix areas is
one of the most important key factors for controlling acid diffusion.
193nm immersion lithography is the most promising lithography candidate for 45nm node technology and beyond. However, immersion specific issue, such as the immersion specific defect and the leaching of resists compound into immersion fluid, still exists without any effective countermeasure. To realize a productive 193nm immersion lithography process, we have to develop a cost effective material that might be immersion dedicated resist. In this paper, we investigated the leaching with different polymer protective agents and hydrophobicity. It was found that the leaching amount was strongly related to the activation energy of the protective agent and hydrophobicity of the polymer. Higher activation energy of protective agents and higher hydrophobicity of polymer showed less amount of leaching. In this paper, newly developed developable type topcoat TILCTM-031 demonstrated the excellent ability of immersion defect prevention.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.