The train wheelset is a crucial part of railway vehicles, and its damage may lead to serious safety accidents. Therefore, it is imperative to detect tread damage timely and accurately. With the rapid development of deep learning, the image detection method based on a convolutional neural network (CNN) has played an important role. Single Shot MultiBox Detector (SSD) is one of the fastest algorithms in the target detection field. The algorithm has achieved excellent results in target detection, but there is a low recognition rate for small targets. Therefore, we propose an improved SSD target detection algorithm. The Original SSD algorithm is ineffective in detecting small targets with pits and cracks, so conv3-3 is selected to join the detection. We optimize convolution kernel parameters; the convolution layer contains more small target details. Compared with the original SSD, the Mean Average Precision (MAP) of tread defect is improved by 4.38%, and the MAP of small target detection is enhanced by 7.24%. This algorithm has a better performance in detection accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.