Fiber optic sensor (FOS) has received much attention in the field of Structure Health Monitoring (SHM) due to its advantages of low weight, small size, high sensitivity multiplexing ability, free of electromagnetic interference and long durability. However, in harsh environments, structures often undergo large strain where few traditional fiber optic sensors could survive. This paper report a novel material with features of light-transparent, chemically inert, thermally stable material Polydimethylsiloxane(PDMS) fabricated large axial/shearing strain sensor. The sensor was fabricated by directly coupling a conventional signal mode fiber into half cured PDMS material using a translation stage under the inspection of a microscope. Meanwhile, a laser diode and a photo detector were used in the fabrication process to make sure the sensor achieved minimum light loss. An experiment was conducted later to investigate the sensor’s transmission characteristic in 1310nm infrared laser relating with the applied axial/shearing strain. The results show that the proposed sensor survived an axial strain of 6 7.79 x 106 με ; a shear of 4 6.49 x 104 με with good linearity and repetition. The experiment indicates that the proposed sensor can potentially be used as strain sensing elements in Structure Health Monitoring systems under earthquake or explosion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.